Abstract
An earlier developed non-linear multigrid solver for incompressible Navier-Stokes equations, exploiting finite volume discretization of the equations, is extended by adaptive local refinement. The multigrid is the outer iterative cycle, while the SIMPLE algorithm is used as a smoothing procedure. Error indicators are used to define the refinement subdomain. A special implementation approach is used, which allow us to perform unstructured local refinement in conjunction with the finite volume discretization. The multigrid - adaptive local refinement algorithm is tested on 2DP oisson equation and further is applied to a lid-driven flow in a square cavity, comparing the results with a bench-mark solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
W. Chen, F. Lien, and M. Leschziner. Local mesh refinement within a multiblock structured-grid scheme for general flows, Comput. Methods Appl. Mech. Eng., 144, 327, 1997.
R. Ewing, R. Lazarov, and P. Vassilevski. Local refinement techniques for elliptic problems on cell-centered grids, II: optimal two-grid iterative methods, Num. LinearA lgebra and Applications, 1(4), 337–368, 1994.
J. H. Ferziger and M. Peric. Computational Methods forFluid Dynamics, Springer, 1999.
U. Ghia, K. N. Ghia, and C. T. Shin. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, 48, 387–411, 1982.
W. Hackbusch. Multi-Grid Methods and Applications, Springer-Verlag, 1985.
O. Iliev and D. Stoyanov. On a multigrid, local refinement solver for incompressible Navier-Stokes equations, Mathematical Modelling, 2001, (to appear).
S. F. McCormick. Multilevel Adaptive Methods forPar tial Differential Equations, SIAM, Philadelphia, 1989.
A. A. Samarskii. Theory of Difference Schemes, Moskow, 1977, (in Russian).
R. Verfuerth. A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley-Teubner, Chichester, Stutgard, 1996.
P. Wesseling. An introduction to multigrid methods, Wiley, Chichester, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Iliev, O., Stoyanov, D. (2001). Multigrid - Adaptive Local Refinement Solver for Incompressible Flows. In: Margenov, S., Waśniewski, J., Yalamov, P. (eds) Large-Scale Scientific Computing. LSSC 2001. Lecture Notes in Computer Science, vol 2179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45346-6_38
Download citation
DOI: https://doi.org/10.1007/3-540-45346-6_38
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43043-8
Online ISBN: 978-3-540-45346-8
eBook Packages: Springer Book Archive