[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimizing Two-Level Preconditionings for the Conjugate Gradient Method

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2179))

Included in the following conference series:

Abstract

The construction of efficient iterative linear equation solvers for ill-conditioned general symmetric positive definite systems is discussed. Certain known two-level conjugate gradient preconditioning techniques are presented in a uniform way and are further generalized and optimized with respect to the spectral or the K-condition numbers. The resulting constructions have shown to be useful for the solution of largescale ill-conditioned symmetric positive definite linear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O. Axelsson. Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.

    Book  Google Scholar 

  2. O. Axelsson. On iterative solvers in structural mechanics, separate displacement ordering and mixed variable methods, Mathematics and Computers in Simulation, 50, 11–30, 1999.

    Article  MathSciNet  Google Scholar 

  3. O. Axelsson. Stabilization of algebraic multilevel iteration methods; additive methods, Numerical Algorithms, 21, 23–47, 1999.

    Article  MathSciNet  Google Scholar 

  4. O. Axelsson and I. Gustafsson. Preconditioning and two-level multigrid methods of arbitrary degree of approximation, Mathematics of Computation, 40, 219–242, 1983.

    Article  MathSciNet  Google Scholar 

  5. O. Axelsson, I. Kaporin, I. Konshin, A. Kucherov, M. Neytcheva, B. Polman, and A. Yeremin. Comparison of algebraic solution methods on a set of benchmark problems in linear elasticity, Tech. Report of Department of Mathematics, University of Nijmegen, The Netherlands, 89p, 2000.

    Google Scholar 

  6. O. Axelsson and I. Kaporin. Error norm estimation and stopping criteria in preconditioned conjugate gradient iterations, Numerical Linear Algebra with Applications, 8,265–286, 2001.

    Article  MathSciNet  Google Scholar 

  7. O. Axelsson, M. Neytcheva, and B. Polman. The bordering method as a preconditioning method, Vestnik Moscow Univ.,Ser. 15: Vychisl. Mat. Cybern., 3–24, 1995.

    Google Scholar 

  8. O. Axelsson and A. Padiy. On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems, SIAM J. Sci. Comp., 20, 1807–1830, 1999.

    Article  MathSciNet  Google Scholar 

  9. O. Axelsson and P. Vassilevski. A survey of multilevel preconditioned iterative methods,BIT, 29, 769–793, 1989.

    Article  MathSciNet  Google Scholar 

  10. A. Eremin and I. Kaporin. Spectral optimization of explicit iterative methods, I. J. Soviet Mathematics, 36, 207–214, 1987.

    Article  Google Scholar 

  11. I. Kaporin. On preconditioned conjugate-gradient method for solving discrete analogs of differential problems, Differential Equations, 26(7), 897–906, 1990, (In Russian).

    MathSciNet  MATH  Google Scholar 

  12. I. Kaporin. Two-level explicit preconditionings for the conjugate-gradient method, Differential Equations, 28(2), 280–289, 1992, (In Russian).

    MathSciNet  MATH  Google Scholar 

  13. I. Kaporin. Explicitly preconditioned conjugate gradient method for the solution of unsymmetric linear systems, Int. J. Computer Math., 40, 169–187, 1992.

    Article  Google Scholar 

  14. I. Kaporin. Spectrum boundary estimation for two-sided explicit preconditioning, Vestnik Mosk. Univ.,ser. 15,Vychisl. Matem. Kibern., 2, 28–42, 1993, (in Russian).

    Google Scholar 

  15. I. Kaporin. New convergence results and preconditioning strategies for the conjugate gradient method, Numerical Linear Algebra with Applications, 1(2), 179–210, 1994.

    Article  MathSciNet  Google Scholar 

  16. I. Kaporin. High quality preconditioning of a general symmetric positive definite matrix based on its U T U +U-decomposition, Numerical Linear Algebra with Applications, 5(6), 483–509, 1998.

    Article  MathSciNet  Google Scholar 

  17. Y. Notay. Optimal V-cycle Algebraic Multilevel Preconditioning, Numerical Linear Algebra with Applications, 5(5), 441–459, 1998.

    Google Scholar 

  18. A. Padiy, O. Axelsson, and B. Polman. Generalized augmented matrix preconditioning approach and its application to iterative solution of ill-conditioned algebraic systems, SIAM J. Matrix Anal. Appl., 22(3), 793–818, 2000.

    Article  MathSciNet  Google Scholar 

  19. A. Reusken. A multigrid method based on incomplete Gaussian elimination, Numer. Linear Algebra Appl., 3(8), 369–390, 1996.

    Article  MathSciNet  Google Scholar 

  20. J. W. Ruge and K. StÜben. Algebraic multigrid (AMG), in S.F. McCormick, ed., Multigrid Methods, Frontiers in Applied Math., 3, SIAM, Philadelphia, PA, 73–130, 1987.

    Chapter  Google Scholar 

  21. Y. Shapira. Model case analysis of an algebraic multilevel method, Numerical Linear Algebra with Applications, 6(8), 655–685, 1999.

    Article  MathSciNet  Google Scholar 

  22. K. StÜben. Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput., 13, 419–452, 1983.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Axelsson, O., Kaporin, I. (2001). Optimizing Two-Level Preconditionings for the Conjugate Gradient Method. In: Margenov, S., Waśniewski, J., Yalamov, P. (eds) Large-Scale Scientific Computing. LSSC 2001. Lecture Notes in Computer Science, vol 2179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45346-6_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45346-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43043-8

  • Online ISBN: 978-3-540-45346-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics