[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Algorithm Based on Orthogonal Polynomial Vectors for Toeplitz Least Squares Problems

  • Conference paper
  • First Online:
Numerical Analysis and Its Applications (NAA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1988))

Included in the following conference series:

Abstract

We develop a new algorithm for solving Toeplitz linear least squares problems. The Toeplitz matrix is first embedded into a circulant matrix. The linear least squares problem is then transformed into a discrete least squares approximation problem for polynomial vectors. Our implementation shows that the normwise backward stability is independent of the condition number of the Toeplitz matrix.

The work of the first and the third author is supported by the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister’s Office for Science, Technology and Culture. The scientific responsibility rests with the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Bojanczyk, R. Brent, and F. DE Hoog, QR factorization of Toeplitz matrices, Numer. Math., 49 (1986), pp. 81–94.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Bultheel and M. Van Barel, Vector orthogonal polynomials and least squares approximation, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 863–885.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Chun, T. Kailath, and H. Lev-ari, Fast parallel algorithms for QR and triangular factorization, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 899–913.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Cybenko, A general orthogonalization technique with applications to time series analysis and signal processing, Math. Comp., 40 (1983), pp. 323–336.

    Article  MATH  MathSciNet  Google Scholar 

  5. —, Fast Toeplitz orthogonalization using inner products, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 734–740.

    Article  MathSciNet  Google Scholar 

  6. I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with partial pivoting for matrices with displacement structure, Math. Comp., 64 (1995), pp. 1557–1576.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Gu, Stable and efficient algorithms for structured systems of linear equations, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 279–306.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 1996.

    Google Scholar 

  9. S. Qiao, Hybrid algorithm for fast Toeplitz orthogonalization, Numer. Math., 53 (1988), pp. 351–366.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Sweet, Numerical Methods for Toeplitz matrices, PhD thesis, University of Adelaide, Adelaide, Australia, 1982.

    Google Scholar 

  11. —, Fast Toeplitz orthogonalization, Numer. Math., 43 (1984), pp. 1–21.

    Google Scholar 

  12. M. Van Barel and A. Bultheel, A parallel algorithm for discrete least squares rational approximation, Numer. Math., 63 (1992), pp. 99–121.

    Article  MATH  MathSciNet  Google Scholar 

  13. —, Discrete linearized least squares approximation on the unit circle, J. Comput. Appl. Math., 50 (1994), pp. 545–563.

    Article  MATH  MathSciNet  Google Scholar 

  14. —, Orthonormal polynomial vectors and least squares approximation for a discrete inner product, Electron. Trans. Numer. Anal., 3 (1995), pp. 1–23.

    MATH  MathSciNet  Google Scholar 

  15. J. Varah, The Prolate matrix, Linear Algebra Appl., 187 (1993), pp. 269–278.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Waldén, R. Karlson, and J.-g. Sun, Optimal backward perturbation bounds for the linear least squares problem, Numerical Linear Algebra with Applications, 2 (1995), pp. 271–286.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Barel, M., Heinig, G., Kravanja, P. (2001). An Algorithm Based on Orthogonal Polynomial Vectors for Toeplitz Least Squares Problems. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2000. Lecture Notes in Computer Science, vol 1988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45262-1_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45262-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41814-6

  • Online ISBN: 978-3-540-45262-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics