Abstract
In this paper, we propose an algorithm based on so-called ruin and recreate (R&R) principle. The R&R approach is conceptual simple but at the same time powerful meta-heuristic for combinatorial optimization problems. The main components of this method are a ruin (mutation) procedure and a recreate (improvement) procedure. We have applied the R&R principle based algorithm for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP). We tested this algorithm on a number of instances from the library of the QAP instances — QAPLIB. The results obtained from the experiments show that the proposed approach appears to be significantly superior to a “pure” tabu search on real-life and real-life like QAP instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Koopmans, T., Beckmann, M.: Assignment Problems and the Location of Economic Activities. Econometrica 25 (1957) 53–76
Hanan, M., Kurtzberg, J.M.: Placement Techniques. In: Breuer, M.A. (ed.): Design Automation of Digital Systems: Theory and Techniques, Vol.1. Prentice-Hall (1972) 213–282
Hu, T.C., Kuh, E.S. (ed.): VLSI Circuit Layout: Theory and Design. IEEE Press, New York (1985)
Steinberg, L.: The Backboard Wiring Problem: A Placement Algorithm. SIAM Review 3 (1961) 37–50
Dickey, J.W., Hopkins, J.W.: Campus Building Arrangement Using TOPAZ. Transportation Research 6 (1972) 59–68
Elshafei, A.N.: Hospital Layout as a Quadratic Assignment Problem. Operations Research Quarterly 28 (1977) 167–179
Taillard, E.: Comparison of Iterative Searches for the Quadratic Assignment Problem. Location Science 3 (1995) 87–105
Eschermann, B., Wunderlich, H.J.: Optimized Synthesis of Self-testable Finite State Machines. 20th International Symposium on Fault-Tolerant Computing (FFTCS 20) (1990)
Burkard, R.E., Offermann, J.: Entwurf von Schreibmaschinentastaturen mittels Quadratischer Zuordnungsprobleme. Zeitschrift fuer Operations Research 21 (1977) 121–132
Burkard, R.E.: Locations with Spatial Interactions: The Quadratic Assignment Problem. In: Mirchandani, P.B., Francis, R.L. (eds.): Discrete Location Theory. Wiley, New York (1991) 387–437
Burkard, R.E., Çela, E., Pardalos, P.M., Pitsoulis, L.: The Quadratic Assignment Problem. In: Du, D.Z., Pardalos, P.M. (eds.): Handbook of Combinatorial Optimization, Vol.3. Kluwer (1998) 241–337
Sahni, S., Gonzalez, T.: P-complete Approximation Problems. J. of ACM 23 (1976) 555–565
Gambardella, L.M., Taillard, E., Dorigo, M.: Ant Colonies for the Quadratic Assignment Problems. J. of the Operational Research Society 50 (1999) 167–176
Stuetzle, T., Dorigo, M.: ACO Algorithms for the Quadratic Assignment Problem. In: Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill (1999) 33–50
Ahuja, R.K., Orlin, J.B., Tiwari, A.: A Greedy Genetic Algorithm for the Quadratic Assignment Problem. Computers & Operations Research 27 (2000) 917–934
Fleurent, C., Ferland, J.A.: Genetic Hybrids for the Quadratic Assignment Problem. In: Pardalos, P.M., Wolkowicz, H. (eds.): Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.16. AMS, Providence (1994) 173–188
Merz, P., Freisleben, B.: A Genetic Local Search Approach to the Quadratic Assignment Problem. Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA’97) (1997)
Li, Y., Pardalos, P.M., Resende, M.G.C.: A Greedy Randomized Adaptive Search Procedure for the Quadratic Assignment Problem. In: Pardalos, P.M., Wolkowicz, H. (eds.): Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.16. AMS, Providence (1994) 237–261
Stuetzle, T.: Iterated Local Search for the Quadratic Assignment Problem. Tech. Report AIDA-99-03, Darmstadt, Germany (1999)
Boelte, A., Thonemann, U.W.: Optimizing Simulated Annealing Schedules with Genetic Programming. European J. of Operational Research 92 (1996) 402–416
Connolly, D.T.: An Improved Annealing Scheme for the QAP. European J. of Operational Research 46 (1990) 93–100
Battiti, R., Tecchiolli, G.: The Reactive Tabu Search. ORSA J. on Computing 6 (1994) 126–140
Skorin-Kapov, J.: Tabu Search Applied to the Quadratic Assignment Problem. ORSA J. on Computing 2 (1990) 33–45
Taillard, E.: Robust Taboo Search for the QAP. Parallel Computing 17 (1991) 443–455
Çela, E.: The Quadratic Assignment Problem: Theory and Algorithms. Kluwer, Dordrecht (1998)
Schrimpf, G., Schneider, K., Stamm-Wilbrandt, H., Dueck, V.: Record Breaking Optimization Results Using the Ruin and Recreate Principle. J. of Computational Physics 159 (2000) 139–171
Martin, O., Otto, S.W.: Combining Simulated Annealing with Local Search Heuristics. Annals of Operations Research 63 (1996) 57–75
Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov Chains for the Traveling Salesman Problem. Complex Systems 5 (1991) 299–326
Mladenović, N., Hansen, P.: Variable Neighbourhood Search. Computers & Operations Research 24 (1997) 1097–1100
Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB — A Quadratic Assignment Problem Library. J. of Global Optimization 10 (1997) 391–403
Taillard, E., Gambardella, L.M.: Adaptive Memories for the Quadratic Assignment Problem. Tech. Report IDSIA-87-97, Lugano, Switzerland (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Misevicius, A. (2003). Ruin and Recreate Principle Based Approach for the Quadratic Assignment Problem. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_71
Download citation
DOI: https://doi.org/10.1007/3-540-45105-6_71
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40602-0
Online ISBN: 978-3-540-45105-1
eBook Packages: Springer Book Archive