[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Ruin and Recreate Principle Based Approach for the Quadratic Assignment Problem

  • Conference paper
  • First Online:
Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2723))

Included in the following conference series:

Abstract

In this paper, we propose an algorithm based on so-called ruin and recreate (R&R) principle. The R&R approach is conceptual simple but at the same time powerful meta-heuristic for combinatorial optimization problems. The main components of this method are a ruin (mutation) procedure and a recreate (improvement) procedure. We have applied the R&R principle based algorithm for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP). We tested this algorithm on a number of instances from the library of the QAP instances — QAPLIB. The results obtained from the experiments show that the proposed approach appears to be significantly superior to a “pure” tabu search on real-life and real-life like QAP instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 56.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Koopmans, T., Beckmann, M.: Assignment Problems and the Location of Economic Activities. Econometrica 25 (1957) 53–76

    Article  MATH  MathSciNet  Google Scholar 

  2. Hanan, M., Kurtzberg, J.M.: Placement Techniques. In: Breuer, M.A. (ed.): Design Automation of Digital Systems: Theory and Techniques, Vol.1. Prentice-Hall (1972) 213–282

    Google Scholar 

  3. Hu, T.C., Kuh, E.S. (ed.): VLSI Circuit Layout: Theory and Design. IEEE Press, New York (1985)

    Google Scholar 

  4. Steinberg, L.: The Backboard Wiring Problem: A Placement Algorithm. SIAM Review 3 (1961) 37–50

    Article  MATH  MathSciNet  Google Scholar 

  5. Dickey, J.W., Hopkins, J.W.: Campus Building Arrangement Using TOPAZ. Transportation Research 6 (1972) 59–68

    Article  Google Scholar 

  6. Elshafei, A.N.: Hospital Layout as a Quadratic Assignment Problem. Operations Research Quarterly 28 (1977) 167–179

    Article  Google Scholar 

  7. Taillard, E.: Comparison of Iterative Searches for the Quadratic Assignment Problem. Location Science 3 (1995) 87–105

    Article  MATH  Google Scholar 

  8. Eschermann, B., Wunderlich, H.J.: Optimized Synthesis of Self-testable Finite State Machines. 20th International Symposium on Fault-Tolerant Computing (FFTCS 20) (1990)

    Google Scholar 

  9. Burkard, R.E., Offermann, J.: Entwurf von Schreibmaschinentastaturen mittels Quadratischer Zuordnungsprobleme. Zeitschrift fuer Operations Research 21 (1977) 121–132

    Article  Google Scholar 

  10. Burkard, R.E.: Locations with Spatial Interactions: The Quadratic Assignment Problem. In: Mirchandani, P.B., Francis, R.L. (eds.): Discrete Location Theory. Wiley, New York (1991) 387–437

    Google Scholar 

  11. Burkard, R.E., Çela, E., Pardalos, P.M., Pitsoulis, L.: The Quadratic Assignment Problem. In: Du, D.Z., Pardalos, P.M. (eds.): Handbook of Combinatorial Optimization, Vol.3. Kluwer (1998) 241–337

    Google Scholar 

  12. Sahni, S., Gonzalez, T.: P-complete Approximation Problems. J. of ACM 23 (1976) 555–565

    Article  MATH  MathSciNet  Google Scholar 

  13. Gambardella, L.M., Taillard, E., Dorigo, M.: Ant Colonies for the Quadratic Assignment Problems. J. of the Operational Research Society 50 (1999) 167–176

    MATH  Google Scholar 

  14. Stuetzle, T., Dorigo, M.: ACO Algorithms for the Quadratic Assignment Problem. In: Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill (1999) 33–50

    Google Scholar 

  15. Ahuja, R.K., Orlin, J.B., Tiwari, A.: A Greedy Genetic Algorithm for the Quadratic Assignment Problem. Computers & Operations Research 27 (2000) 917–934

    Article  MATH  MathSciNet  Google Scholar 

  16. Fleurent, C., Ferland, J.A.: Genetic Hybrids for the Quadratic Assignment Problem. In: Pardalos, P.M., Wolkowicz, H. (eds.): Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.16. AMS, Providence (1994) 173–188

    Google Scholar 

  17. Merz, P., Freisleben, B.: A Genetic Local Search Approach to the Quadratic Assignment Problem. Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA’97) (1997)

    Google Scholar 

  18. Li, Y., Pardalos, P.M., Resende, M.G.C.: A Greedy Randomized Adaptive Search Procedure for the Quadratic Assignment Problem. In: Pardalos, P.M., Wolkowicz, H. (eds.): Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.16. AMS, Providence (1994) 237–261

    Google Scholar 

  19. Stuetzle, T.: Iterated Local Search for the Quadratic Assignment Problem. Tech. Report AIDA-99-03, Darmstadt, Germany (1999)

    Google Scholar 

  20. Boelte, A., Thonemann, U.W.: Optimizing Simulated Annealing Schedules with Genetic Programming. European J. of Operational Research 92 (1996) 402–416

    Article  MATH  Google Scholar 

  21. Connolly, D.T.: An Improved Annealing Scheme for the QAP. European J. of Operational Research 46 (1990) 93–100

    Article  MATH  MathSciNet  Google Scholar 

  22. Battiti, R., Tecchiolli, G.: The Reactive Tabu Search. ORSA J. on Computing 6 (1994) 126–140

    MATH  Google Scholar 

  23. Skorin-Kapov, J.: Tabu Search Applied to the Quadratic Assignment Problem. ORSA J. on Computing 2 (1990) 33–45

    MATH  Google Scholar 

  24. Taillard, E.: Robust Taboo Search for the QAP. Parallel Computing 17 (1991) 443–455

    Article  MathSciNet  Google Scholar 

  25. Çela, E.: The Quadratic Assignment Problem: Theory and Algorithms. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  26. Schrimpf, G., Schneider, K., Stamm-Wilbrandt, H., Dueck, V.: Record Breaking Optimization Results Using the Ruin and Recreate Principle. J. of Computational Physics 159 (2000) 139–171

    Article  MATH  MathSciNet  Google Scholar 

  27. Martin, O., Otto, S.W.: Combining Simulated Annealing with Local Search Heuristics. Annals of Operations Research 63 (1996) 57–75

    Article  MATH  Google Scholar 

  28. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov Chains for the Traveling Salesman Problem. Complex Systems 5 (1991) 299–326

    MATH  MathSciNet  Google Scholar 

  29. Mladenović, N., Hansen, P.: Variable Neighbourhood Search. Computers & Operations Research 24 (1997) 1097–1100

    Article  MATH  MathSciNet  Google Scholar 

  30. Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB — A Quadratic Assignment Problem Library. J. of Global Optimization 10 (1997) 391–403

    Article  MATH  MathSciNet  Google Scholar 

  31. Taillard, E., Gambardella, L.M.: Adaptive Memories for the Quadratic Assignment Problem. Tech. Report IDSIA-87-97, Lugano, Switzerland (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Misevicius, A. (2003). Ruin and Recreate Principle Based Approach for the Quadratic Assignment Problem. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_71

Download citation

  • DOI: https://doi.org/10.1007/3-540-45105-6_71

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40602-0

  • Online ISBN: 978-3-540-45105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics