Abstract
Let G be a graph on n vertices that does not have odd cycles of lengths 3, . . ., 2κ − 1. We present an efficient distributed algorithm that finds in O(logD n) steps (D = D(k)) matching M, such that |M| ≥ (1 − α)|M*|, where M* is a maximum matching in G, α = 1/k+1.
Research supported by KBN grant no. 7 T11C 032 20
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Czygrinow, M. Hańćkowiak, E. Szymańska, Distributed algorithm for approximating the maximum matching, submitted, 2002.
T. Fischer, A. V. Goldberg, D. J. Haglin, S. Plotkin, Approximating matchings in parallel, Information Processing Letters, 1993, 46, pp. 115–118.
M. Hańćkowiak, M. Karoński, A. Panconesi, A faster distributed algorithm for computing maximal matching deterministically, Proceedings of PODC 99, the Eighteen Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 219–228.
N. Linial, Locality in distributed graph algorithms, SIAM Journal on Computing, 1992, 21(1), pp. 193–201.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Czygrinow, A., Hańćkowiak, M. (2003). Distributed Algorithm for Better Approximation of the Maximum Matching. In: Warnow, T., Zhu, B. (eds) Computing and Combinatorics. COCOON 2003. Lecture Notes in Computer Science, vol 2697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45071-8_26
Download citation
DOI: https://doi.org/10.1007/3-540-45071-8_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40534-4
Online ISBN: 978-3-540-45071-9
eBook Packages: Springer Book Archive