[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A 3-D Biomechanical Model of the Salamander

  • Conference paper
  • First Online:
Virtual Worlds (VW 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1834))

Included in the following conference series:

Abstract

This article describes a 3D biomechanical simulation of a salamander to be used in experiments in computational neuroethology. The physically-based simulation represents the salamander as an articulated body, actuated by muscles simulated as springs and dampers, in interaction with a simple environment. The aim of the simulation is to investigate the neural circuits underlying the aquatic and terrestrial locomotion of the real salamander, as well as to serve as test bed for investigating vertebrate sensorimotor coordination in silico.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.D. Beer. Intelligence as Adaptive Behavior, an Experiment in Computational Neuroethology. Academic Press, 1990.

    Google Scholar 

  2. D. Cliff. Computational neuroethology. In M.A. Arbib, editor, The handbook of brain theory and neural networks, pages 626–630. MIT Press, 1995.

    Google Scholar 

  3. R.D. Quinn and K.S. Espenschied. Control of a hexapod robot using a biologically inspired neural network. In R.D. Beer, R.E. Ritzmann, and T.M. McKenna, editors, Biological neural networks in invertebrate neuroethology and robotics. Academic Press, 1993.

    Google Scholar 

  4. H. Cruse, D.E. Brunn, Ch. Bartling, J. Dean, M. Dreifert, T. Kindermann, and J. Schmitz. Walking: A complex behavior controlled by simple networks. Adaptive Behavior, 3(4):385–418, 1995.

    Article  Google Scholar 

  5. B. Webb. Robotics experiments in cricket phonotaxis. In D. Ciff, P. Husbands, J.M. Meyer, and S.W. Wilson, editors, Proceedings, From Animals to Animats III. MIT Press, 1994.

    Google Scholar 

  6. N. Franceschini, J.M. Pichon, and C. Blanes. From insect vision to robot vision. Phil. Trans. R. Soc. Lond. B, 337:283–294, 1992.

    Article  Google Scholar 

  7. D. Cliff. Neural networks for visual tracking in an artificial fly. In F.J. Varela and P. Bourgine, editors, Proceedings of the first European Conference on Artificial Life (ECAL91). MIT Press, 1992.

    Google Scholar 

  8. M.A. Arbib. Levels of modeling of visually guided behavior. Behavioral and Brain Sciences, 10:407–465, 1987.

    Article  Google Scholar 

  9. A. Cobas and M. Arbib. Prey-catching and predator-avoidance in frog and toad: defining the schemas. Journal of Theoretical Biology, 157:271–304, 1992.

    Article  Google Scholar 

  10. M.A. Arbib and J.S. Liaw. Sensorimotor transformations in the world of frogs and robots. Artificial Intelligence, 72:53–79, 1995.

    Article  Google Scholar 

  11. Ö. Ekeberg. A combined neuronal and mechanical model of fish swimming. Biological Cybernetics, 69:363–374, 1993.

    MATH  Google Scholar 

  12. D. Terzopoulos, X. Tu, and R. Grzeszczuk. Artificial fishes: autonomous locomotion, perception, behavior, and learning in a simulated physical world. Artificial Life, 1(4):327–351, 1994.

    Article  Google Scholar 

  13. P.F.M.J. Vershure, J. Wray, O. Sporns, G. Tononi, and G.M. Edelmann. Multilevel analysis of classical conditioning in a behaving real world artifact. Robotics and Autonomous Systems, 16:247–265, 1995.

    Article  Google Scholar 

  14. A.J. Ijspeert, J. Hallam, and D. Willshaw. From lampreys to salamanders: evolving neural controllers for swimming and walking. In R. Pfeifer, B. Blumberg, J.-A. Meyer, and S.W. Wilson, editors, From Animals to Animats, Proceedings of the Fifth International Conference of The Society for Adaptive Behavior (SAB98), pages 390–399. MIT Press, 1998.

    Google Scholar 

  15. A.J. Ijspeert. Synthetic approaches to neurobiology: review and case study in the control of anguiliform locomotion. In D. Floreano, F. Mondada, and J.-D. Nicoud, editors, Proceedings of the Fifth European Conference on Artificial Life ECAL99, pages 195–204. Springer Verlag, 1999.

    Google Scholar 

  16. A.J. Ijspeert. Evolution of neural controllers for salamander-like locomotion. In G.T. McKee and P.S. Schenker, editors, Proceedings of Sensor Fusion and Decentralised Control in Robotics Systems II, pages 168–179. SPIE Proceeding Vol. 3839, 1999.

    Google Scholar 

  17. L.M. Frolich and A.A. Biewener. Kinematic and electromyographic analysis of the functional role of the body axis during terrestrial and aquatic locomotion in the salamander ambystoma tigrinum. Journal of Experimental Biology, 62:107–130, 1992.

    Google Scholar 

  18. M.A. Ashley-Ross. Hindlimb kinematics during terrestrial locomotion in a salamander (dicampton tenebrosus). Journal of Experimental Biology, 193:255–283, 1994.

    Google Scholar 

  19. M.A. Ashley-Ross. Metamorphic and speed effects on hindlimb kinematics during terrestrial locomotion in the salamander (dicampton tenebrosus). Journal of Experimental Biology, 193:285–305, 1994.

    Google Scholar 

  20. I. Delvolvé, T. Bem, and J.-M. Cabelguen. Epaxial and limb muscle activity during swimming and terrestrial stepping in the adult newt, pleurodeles waltl. Journal of Neurophysiology, 78:638–650, 1997.

    Google Scholar 

  21. A.H. Cohen. Evolution of the vertebrate central pattern generator for locomotion. In A. H. Cohen, S. Rossignol, and S. Grillner, editors, Neural control of rhythmic movements in vertebrates. Jon Wiley & Sons, 1988.

    Google Scholar 

  22. A.J. Ijspeert, J. Hallam, and D. Willshaw. Evolving swimming controllers for a simulated lamprey with inspiration from neurobiology. Adaptive Behavior, 7(2):151–172, 1999.

    Article  Google Scholar 

  23. A.J. Ijspeert and J. Kodjabachian. Evolution and development of a central pattern generator for the swimming of a lamprey. Artificial Life, 5(3):247–269, 1999.

    Article  Google Scholar 

  24. A.J. Ijspeert. A neuromechanical investigation of salamander locomotion. In Proceedings of the International Symposium on Adaptive Motion of Animals and Machines, Montreal, Canada, 8–12 August 2000. 2000. To appear.

    Google Scholar 

  25. A.J. Ijspeert and M. Arbib. Visual tracking in simulated salamander locomotion. In Proceedings of the Sixth International Conference of The Society for Adaptive Behavior (SAB2000), Paris, France, 11–15 September 2000. MIT Press, 2000. To appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ijspeert, A.J. (2000). A 3-D Biomechanical Model of the Salamander. In: Heudin, JC. (eds) Virtual Worlds. VW 2000. Lecture Notes in Computer Science(), vol 1834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45016-5_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45016-5_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67707-9

  • Online ISBN: 978-3-540-45016-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics