[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract Families of Graphs

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2450))

Included in the following conference series:

Abstract

A natural way to describe a family of languages is to use rational transformations from a generator. From these transformations, Ginsburg and Greibach have defined the Abstract Family of Languages (AFL). Infinite graphs (also called infinite automata) are natural tools to study languages. In this paper, we study families of infinite graphs that are described from generators by transformations preserving the decidability of monadic second order logic. We define the Abstract Family of Graphs (AFG). We show that traces of AFG are rational cones and traces of AFG that admit a rationally colored generator are AFL. We generalize some properties of prefix recognizable graphs to AFG. We apply these tools and the notion of geometrical complexity to study subfamilies of prefix recognizable graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-M. Auteber and L. Boasson. Transductions Rationnelles — Application aux Langages Algébriques. Masson, Paris, 1988.

    Google Scholar 

  2. J. Berstel. Transductions and Context-Free-Languages. B.G. Teubner, Stuttgart, 1979.

    MATH  Google Scholar 

  3. A. Blumensath. Prefix-recognizable graphs and monadic second order logic. Technical Report AIB-06-2001, RWTH Aachen, April 2001.

    Google Scholar 

  4. D. Caucal. On infinite transition graphs having a decidable monadic theory. In ICALP 1996, volume 1099 of LNCS, pages 194–205, 1996.

    Google Scholar 

  5. D. Caucal. On the transition graphs of Turing machines. In MCU 2001, LNCS, pages 177–189, 2001.

    Google Scholar 

  6. N. Chomsky and MP. Schützenberger. The algebraic theory of context-free languages in computer programming and formal systems. North Holland, 1963.

    Google Scholar 

  7. B. Courcelle. The monadic second-order logic of graphs ii: infinite graphs of bounded tree width. Math. Systems Theory, 21:187–221, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Courcelle. Monadic-second order definable graph transductions: a survey. TCS, vol. 126:pp. 53–75, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages. North Holland/American Elsevier, 1975.

    Google Scholar 

  10. S. Ginsburg and S. Greibach. Abstract families of languages. Mem. Am. Math. Soc., 87, 1969.

    Google Scholar 

  11. A. Maignan. Sur la complexité des graphes réguliers. rapport de DEA (IFSIC), Rennes, 1994.

    Google Scholar 

  12. C. Morvan. Les graphes rationnels. Thèse de doctorat, Université de Rennes 1, Novembre 2001.

    Google Scholar 

  13. C. Morvan and C. Stirling. Rational graphs traces context-sensitive languages. In MFCS 2001, number 2136 in LNCS, pages 436–446, 2001.

    Google Scholar 

  14. D. Muller and P. Schupp. The theory of ends, pushdown automata, and secondorder logic. TCS, 37:51–75, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Rispal. Graphes rationnels synchronisés. Rapport de DEA, Université de Rennes 1, 2001.

    Google Scholar 

  16. W. Thomas. A short introduction to infinite automata. In Proceedings of the 5th international conference Developments in Language Theory, volume 2295, pages 130–144. LNCS, 2001.

    Google Scholar 

  17. T. Urvoy. Regularity of congruential graphs. In MFCS 2000, volume 1893 of LNCS, pages 680–689, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urvoy, T. (2003). Abstract Families of Graphs. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2002. Lecture Notes in Computer Science, vol 2450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45005-X_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-45005-X_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40431-6

  • Online ISBN: 978-3-540-45005-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics