[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automata on Linear Orderings

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2450))

Included in the following conference series:

  • 352 Accesses

Abstract

We consider words indexed by linear orderings. These extend finite, (bi-)infinite words and words on ordinals. We introduce automata and rational expressions for words on linear orderings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Asarin. Equations on timed languages. In T. Henzinger and S. Sastry, editors, Hybrid Systems: Computation and Control, number 1386 in Lect. Notes in Comput. Sci., pages 1–12, 1998.

    Google Scholar 

  2. E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata. In Proceedings, Twelth Annual IEEE Symposium on Logic in Computer Science, pages 160–171, 1997.

    Google Scholar 

  3. N. Bedon and O. Carton. An Eilenberg theorem for words on countable ordinals. In Cláudio L. Lucchesi and Arnaldo V. Moura, editors, Latin’98: Theoretical Informatics, volume 1380 of Lect. Notes in Comput. Sci., pages 53–64. Springer-Verlag, 1998.

    Google Scholar 

  4. B. Bérard and C. Picaronny. Accepting Zeno words without making time stand still. In Mathematical Foundations of Computer Science 1997, volume 1295 of Lect. Notes in Comput. Sci., pages 149–158, 1997.

    Google Scholar 

  5. P. Bouyer and A. Petit. A Kleene/Büchi-like theorem for clock languages. J. of Automata, Languages and Combinatorics, 2001. To appear.

    Google Scholar 

  6. V. Bruyère and O. Carton. Automata on linear orderings. Technical Report 2000-12, Institut Gaspard Monge, 2000. Submitted.

    Google Scholar 

  7. V. Bruyère and O. Carton. Automata on linear orderings. In Jiří Sgall, Aleš Pultr, and Petr Kolman, editors, MFCS’2001, volume 2136 of Lect. Notes in Comput. Sci., pages 236–247, 2001.

    Google Scholar 

  8. V. Bruyère and O. Carton. Hierarchy among automata on linear orderings. In R. Baeza-Yates, U. Montanari, and N. Santoro, editors, TCS’2002/IFIP’2002, pages 107–118. Kluwer Academic Publishers, 2002.

    Google Scholar 

  9. J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik und grundl. Math., 6:66–92, 1960.

    Article  MATH  Google Scholar 

  10. J. R. Büchi. On a decision method in the restricted second-order arithmetic. In Proc. Int. Congress Logic, Methodology and Philosophy of science, Berkeley 1960, pages 1–11. Stanford University Press, 1962.

    Google Scholar 

  11. J. R. Büchi. Transfinite automata recursions and weak second order theory of ordinals. In Proc. Int. Congress Logic, Methodology, and Philosophy of Science, Jerusalem 1964, pages 2–23. North Holland, 1965.

    Google Scholar 

  12. Y. Choueka. Finite automata, definable sets, and regular expressions over ωn-tapes. J. Comput. System Sci., 17(1):81–97, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Courcelle. Frontiers of infinite trees. RAIRO Theoretical Informatics, 12(4):319–337, 1978.

    MATH  MathSciNet  Google Scholar 

  14. D. Girault-Beauquier. Bilimites de langages reconnaissables. Theoret. Comput. Sci., 33(2–3):335–342, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. R. Hansen, P. K. Pandya, and Z. Chaochen. Finite divergence. Theoret. Comput. Sci., 138(1):113–139, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Heilbrunner. An algorithm for the solution of fixed-point equations for infinite words. RAIRO Theoretical Informatics, 14(2):131–141, 1980.

    MATH  MathSciNet  Google Scholar 

  17. S. C. Kleene. Representation of events in nerve nets and finite automata. In C.E. Shannon, editor, Automata studies, pages 3–41. Princeton University Press, Princeton, 1956.

    Google Scholar 

  18. M. Nivat and D. Perrin. Ensembles reconnaissables de mots bi-infinis. In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pages 47–59, 1982.

    Google Scholar 

  19. D. Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 1, pages 1–57. Elsevier, 1990.

    Google Scholar 

  20. J. G. Rosenstein. Linear Orderings. Academic Press, New York, 1982.

    MATH  Google Scholar 

  21. S. Shelah. The monadic theory of order. Annals of Mathematics, 102:379–419, 1975.

    Article  MathSciNet  Google Scholar 

  22. W. Thomas. On frontiers of regular sets. RAIRO Theoretical Informatics, 20:371–381, 1986.

    MATH  Google Scholar 

  23. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 4, pages 133–191. Elsevier, 1990.

    Google Scholar 

  24. W. Thomas. Ehrenfeucht games, the composition method, and the monadic theory of ordinal words. In Structures in Logic and Computer Science, A Selection of Essays in Honor of A. Ehrenfeucht, number 1261 in Lect. Notes in Comput. Sci., pages 118–143. Springer-Verlag, 1997.

    Google Scholar 

  25. J. Wojciechowski. Finite automata on transfinite sequences and regular expressions. Fundamenta Informaticæ, 8(3–4):379–396, 1985.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruyère, V., Carton, O. (2003). Automata on Linear Orderings. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2002. Lecture Notes in Computer Science, vol 2450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45005-X_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45005-X_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40431-6

  • Online ISBN: 978-3-540-45005-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics