[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparing Verboseness for Finite Automata and Turing Machines

  • Conference paper
  • First Online:
STACS 2002 (STACS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2285))

Included in the following conference series:

Abstract

A language is called (m,n)-verbose if there exists a Turing machine that enumerates for any n words at most m possibilities for their characteristic string. We compare this notion to (m,n)-fa-verboseness, where instead of a Turing machine a finite automaton is used. Using a new structural diagonalisation method, where finite automata trick Turing machines, we prove that all (m,n)-verbose languages are (h, k)- verbose, iff all (m,n)-fa-verbose languages are (h,k)-fa-verbose. In other words, Turing machines and finite automata behave in exactly the same way with respect to inclusion of verboseness classes. This identical behaviour implies that the Nonspeedup Theorem also holds for finite automata. As an application of the theoretical framework, we prove a lower bound on the number of bits that need to be communicated to finite automata protocol checkers for nonregular protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Austinat, V. Diekert, and U. Hertrampf. A structural propertyof regular frequencyclasses. Theoretical Comput. Sci., to appear 2002.

    Google Scholar 

  2. H. Austinat, V. Diekert, U. Hertrampf, and H. Petersen. Regular frequencycomputations. In Proc. RIMS Symposium on Algebraic Systems, Formal Languages and Computation, volume 1166 of RIMS Kokyuroku, pages 35–42, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 2000.

    Google Scholar 

  3. R. Beigel. Query-limited reducibilities. PhD thesis, Stanford University, Stanford, USA, 1987.

    Google Scholar 

  4. R. Beigel. Bounded queries to SAT and the Boolean hierarchy. Theoretical Comput. Sci., 84(2):199–223, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Beigel, W. I. Gasarch, J. Gill, and J. C. Owings. Terse, superterse, and verbose sets. Inform. Computation, 103(1):68–85, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Beigel, M. Kummer, and F. Stephan. Approximable sets. Inform. Computation, 120(2):304–314, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Beigel, M. Kummer, and F. Stephan. Quantifying the amount of verboseness. Inform. Computation, 118(1):73–90, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Cai and L. A. Hemachandra. Enumerative counting is hard. Inform. Computation, 82(1):34–44, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. I. Gasarch and G. A. Martin. Bounded Queries in Recursion Theory. Birkhäuser, 1999.

    Google Scholar 

  10. C. G. Jockusch, Jr. Reducibilities in Recursive Function Theory. PhD thesis, MIT, Cambridge, Massachusetts, 1966.

    Google Scholar 

  11. E. B. Kinber. Frequencycomputations in finite automata. Cybernetics, 2:179–187, 1976.

    Google Scholar 

  12. M. Kummer. A proof of Beigel’s cardinalityconjecture. J. Symbolic Logic, 57(2): 677–681, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Kummer and F. Stephan. Some aspects of frequencycomputation. Technical Report 21/91, Universität Karlsruhe, Fakultät für Informatik, Germany, 1991.

    Google Scholar 

  14. M. Kummer and F. Stephan. Effective search problems. Math. Logic Quarterly, 40:224–236, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Ogihara. Polynomial-time membership comparable sets. SIAM J. Comput., 24(5):1068–1081, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Tantau. Combinatorial representations of partial information classes and their truth-table closures. Diploma thesis, Technische Universität Berlin, Germany, 1999. Available at the Electronic Colloquium on Computational Complexity.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tantau, T. (2002). Comparing Verboseness for Finite Automata and Turing Machines. In: Alt, H., Ferreira, A. (eds) STACS 2002. STACS 2002. Lecture Notes in Computer Science, vol 2285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45841-7_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-45841-7_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43283-8

  • Online ISBN: 978-3-540-45841-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics