Abstract
A language is called (m,n)-verbose if there exists a Turing machine that enumerates for any n words at most m possibilities for their characteristic string. We compare this notion to (m,n)-fa-verboseness, where instead of a Turing machine a finite automaton is used. Using a new structural diagonalisation method, where finite automata trick Turing machines, we prove that all (m,n)-verbose languages are (h, k)- verbose, iff all (m,n)-fa-verbose languages are (h,k)-fa-verbose. In other words, Turing machines and finite automata behave in exactly the same way with respect to inclusion of verboseness classes. This identical behaviour implies that the Nonspeedup Theorem also holds for finite automata. As an application of the theoretical framework, we prove a lower bound on the number of bits that need to be communicated to finite automata protocol checkers for nonregular protocols.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Austinat, V. Diekert, and U. Hertrampf. A structural propertyof regular frequencyclasses. Theoretical Comput. Sci., to appear 2002.
H. Austinat, V. Diekert, U. Hertrampf, and H. Petersen. Regular frequencycomputations. In Proc. RIMS Symposium on Algebraic Systems, Formal Languages and Computation, volume 1166 of RIMS Kokyuroku, pages 35–42, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 2000.
R. Beigel. Query-limited reducibilities. PhD thesis, Stanford University, Stanford, USA, 1987.
R. Beigel. Bounded queries to SAT and the Boolean hierarchy. Theoretical Comput. Sci., 84(2):199–223, 1991.
R. Beigel, W. I. Gasarch, J. Gill, and J. C. Owings. Terse, superterse, and verbose sets. Inform. Computation, 103(1):68–85, 1993.
R. Beigel, M. Kummer, and F. Stephan. Approximable sets. Inform. Computation, 120(2):304–314, 1995.
R. Beigel, M. Kummer, and F. Stephan. Quantifying the amount of verboseness. Inform. Computation, 118(1):73–90, 1995.
J. Cai and L. A. Hemachandra. Enumerative counting is hard. Inform. Computation, 82(1):34–44, 1989.
W. I. Gasarch and G. A. Martin. Bounded Queries in Recursion Theory. Birkhäuser, 1999.
C. G. Jockusch, Jr. Reducibilities in Recursive Function Theory. PhD thesis, MIT, Cambridge, Massachusetts, 1966.
E. B. Kinber. Frequencycomputations in finite automata. Cybernetics, 2:179–187, 1976.
M. Kummer. A proof of Beigel’s cardinalityconjecture. J. Symbolic Logic, 57(2): 677–681, 1992.
M. Kummer and F. Stephan. Some aspects of frequencycomputation. Technical Report 21/91, Universität Karlsruhe, Fakultät für Informatik, Germany, 1991.
M. Kummer and F. Stephan. Effective search problems. Math. Logic Quarterly, 40:224–236, 1994.
M. Ogihara. Polynomial-time membership comparable sets. SIAM J. Comput., 24(5):1068–1081, 1995.
T. Tantau. Combinatorial representations of partial information classes and their truth-table closures. Diploma thesis, Technische Universität Berlin, Germany, 1999. Available at the Electronic Colloquium on Computational Complexity.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tantau, T. (2002). Comparing Verboseness for Finite Automata and Turing Machines. In: Alt, H., Ferreira, A. (eds) STACS 2002. STACS 2002. Lecture Notes in Computer Science, vol 2285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45841-7_38
Download citation
DOI: https://doi.org/10.1007/3-540-45841-7_38
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43283-8
Online ISBN: 978-3-540-45841-8
eBook Packages: Springer Book Archive