[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning of Regular Bi-ω Languages

  • Conference paper
  • First Online:
Grammatical Inference: Algorithms and Applications (ICGI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2484))

Included in the following conference series:

Abstract

In this paper, we define three classes of languages of bi-infinite words, namely local bi-ω languages, recognizable bi-ω languages and Büchi local bi-ω languages as subclasses of the class of regular bi-ω languages and prove some basic results. We observe that the class of recognizable bi-ω languages coincides with the well-known class of rational bi-adherence languages and show that the class of regular bi-ω languages is the class of morphic images of Büchi local bi-ω languages. We provide learning algorithms for Büchi local bi-ω languages and regular bi-ω languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Angluin. Inductive inference of formal languages from positive data. Inform. Control 45 (1980), 117–135.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Angulin, Queries and concept learning, Machine Learning 2 (1988), 319–342.

    Google Scholar 

  3. M.P. Beal and D. Perrin, Symbolic dynamics and finite automata, in: Hand book of Formal Languages (G. Rozenberg and A. Salomaa eds.) Springer, Berlin, Volume 2, Chapter 10, 1997, 463–506.

    Google Scholar 

  4. L. Boasson and M. Nivat, Adherences of languages, J. Comput System Sci. 20 (1980), 285–309.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. De La Higuera and J.C. Janodet, Inference of ω-languages from prefixes, Manuscript (2002), see http://eurise.univ-st-etienne.fr/~cdlh.

  6. J. Devolder and I. Litovsky, Finitely generated bi-ω languages, Theoretical Computer Science 85 (1991), 33–52.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Gire and M. Nivat, Languages algebriques de mots biinfinis, Theor. Comp. Sci 86 (1991), 277–323.

    Article  MATH  MathSciNet  Google Scholar 

  8. E.M. Gold, Language identification in the limit, Inform. Control 10 (1967), 447–474.

    Article  MATH  Google Scholar 

  9. J. Karhumäki, J. Manuch and W. Plandowski, On defect effect of bi-infinite words, Proceedings of MFCS’98, LNCS 1450 (1998), 674–682.

    Google Scholar 

  10. M. Nivat and D. Perrin. Ensembles reconnaissables de mots bi infinis, Canadian Journal of Mathematics XXX VIII (1986), 513–537.

    MathSciNet  Google Scholar 

  11. A. Saoudi and T. Yokomori, Learning local and recognizable ω-languages and monadic logic programs. Computational Learning Theory: Proceedings of Euro COLT’93 (J. Shawe Taylor and M. Anthony eds) Oxford University Press 1994, 157–169.

    Google Scholar 

  12. W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science (Van Leeuwen ed.), North-Holland, Amsterdam, Volume B 1990, 133–191.

    Google Scholar 

  13. S. Gnanasekaran, V.R. Dare, K.G. Subramanian and D.G. Thomas, Learning ω-regular languages, presented in the International symposium on Artificial Intelligence, Kolhapur during December 18–20, 2001. (To appear in the proceedings of the conference).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thomas, D.G., Begam, M.H., Subramanian, K.G., Gnanasekaran, S. (2002). Learning of Regular Bi-ω Languages. In: Adriaans, P., Fernau, H., van Zaanen, M. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2002. Lecture Notes in Computer Science(), vol 2484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45790-9_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-45790-9_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44239-4

  • Online ISBN: 978-3-540-45790-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics