Abstract
In this paper, we define three classes of languages of bi-infinite words, namely local bi-ω languages, recognizable bi-ω languages and Büchi local bi-ω languages as subclasses of the class of regular bi-ω languages and prove some basic results. We observe that the class of recognizable bi-ω languages coincides with the well-known class of rational bi-adherence languages and show that the class of regular bi-ω languages is the class of morphic images of Büchi local bi-ω languages. We provide learning algorithms for Büchi local bi-ω languages and regular bi-ω languages.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D. Angluin. Inductive inference of formal languages from positive data. Inform. Control 45 (1980), 117–135.
D. Angulin, Queries and concept learning, Machine Learning 2 (1988), 319–342.
M.P. Beal and D. Perrin, Symbolic dynamics and finite automata, in: Hand book of Formal Languages (G. Rozenberg and A. Salomaa eds.) Springer, Berlin, Volume 2, Chapter 10, 1997, 463–506.
L. Boasson and M. Nivat, Adherences of languages, J. Comput System Sci. 20 (1980), 285–309.
C. De La Higuera and J.C. Janodet, Inference of ω-languages from prefixes, Manuscript (2002), see http://eurise.univ-st-etienne.fr/~cdlh.
J. Devolder and I. Litovsky, Finitely generated bi-ω languages, Theoretical Computer Science 85 (1991), 33–52.
F. Gire and M. Nivat, Languages algebriques de mots biinfinis, Theor. Comp. Sci 86 (1991), 277–323.
E.M. Gold, Language identification in the limit, Inform. Control 10 (1967), 447–474.
J. Karhumäki, J. Manuch and W. Plandowski, On defect effect of bi-infinite words, Proceedings of MFCS’98, LNCS 1450 (1998), 674–682.
M. Nivat and D. Perrin. Ensembles reconnaissables de mots bi infinis, Canadian Journal of Mathematics XXX VIII (1986), 513–537.
A. Saoudi and T. Yokomori, Learning local and recognizable ω-languages and monadic logic programs. Computational Learning Theory: Proceedings of Euro COLT’93 (J. Shawe Taylor and M. Anthony eds) Oxford University Press 1994, 157–169.
W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science (Van Leeuwen ed.), North-Holland, Amsterdam, Volume B 1990, 133–191.
S. Gnanasekaran, V.R. Dare, K.G. Subramanian and D.G. Thomas, Learning ω-regular languages, presented in the International symposium on Artificial Intelligence, Kolhapur during December 18–20, 2001. (To appear in the proceedings of the conference).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thomas, D.G., Begam, M.H., Subramanian, K.G., Gnanasekaran, S. (2002). Learning of Regular Bi-ω Languages. In: Adriaans, P., Fernau, H., van Zaanen, M. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2002. Lecture Notes in Computer Science(), vol 2484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45790-9_23
Download citation
DOI: https://doi.org/10.1007/3-540-45790-9_23
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44239-4
Online ISBN: 978-3-540-45790-9
eBook Packages: Springer Book Archive