[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Methods for Inferring Block-Wise Ancestral History from Haploid Sequences

The Haplotype Coloring Problem

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2452))

Included in the following conference series:

  • 1137 Accesses

Abstract

Recent evidence for a “blocky” haplotype structure to the human genome and for its importance to disease inference studies has created a pressing need for tools that identify patterns of past recombination in sequences of samples of human genes and gene regions. We present two new approaches to the reconstruction of likely recombination patterns from a set of haploid sequences which each combine combinatorial optimization techniques with statistically motivated recombination models. The first breaks the problem into two discrete steps: finding recombination sites then coloring sequences to signify the likely ancestry of each segment. The second poses the problem as optimizing a single probability function for parsing a sequence in terms of ancestral haplotypes. We explain the motivation for each method, present algorithms, show their correctness, and analyze their complexity. We illustrate and analyze the methods with results on real, contrived, and simulated datasets.

To whom correspondence should be addressed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baum, L.E., Petrie, T., Soules, G., and Weiss, N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals Math. Stat., 41, 164–171, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  2. Clark, A. G. Inference of Haplotypes from PCR-amplified samples of diploid populations. Mol. Biol. Evol., 7, 111–122, 1990.

    Google Scholar 

  3. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., and Lander, E.S. Highresolution haplotype structure in the human genome. Nature Gen., 29, 229–232, 2001.

    Article  Google Scholar 

  4. Dempster, A.P., Laird, N.M., and Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. B, 39, 1–38, 1977.

    MATH  MathSciNet  Google Scholar 

  5. Edmonds, J. Paths, trees, and flowers. Canad. J. Math., 17, 449–467, 1965.

    MATH  MathSciNet  Google Scholar 

  6. Fearnhead, P. and Donnelly, P. Estimating recombination rates from population genetic data. Genetics, 159:1299–1318, 2001.

    Google Scholar 

  7. Gusfield, D. Efficient algorithms for inferring evolutionary history. Networks, 21:19–28, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gusfield, D. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In Proc. 6th Intl. Conf. Comp. Biol., RECOMB’02, 166–175, 2002.

    Google Scholar 

  9. Hein, J. A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol., 20, 402–411, 1993.

    Google Scholar 

  10. Hudson, R.R. Properties of the neutral allele model with intergenic recombination. Theoret. Pop. Biol., 23, 183–201, 1983.

    Article  MATH  Google Scholar 

  11. Hudson, R.R. and Kaplan, N.L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics, 111, 147–164, 1985.

    Google Scholar 

  12. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 409, 860–921, 2001.

    Article  Google Scholar 

  13. Jeffreys, A.J., Kauppi, L., and Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Gen., 29, 217–222, 2001.

    Article  Google Scholar 

  14. Johnson, G.C.L., Esposito, L., Barratt, B.J., Smith, A.N., Heward, J., Di Genova, G., Ueda, H., Cordell, H.J., Eaves, I.A., Dudbridge, F., Twells, R.C.J., Payne, F., Hughes, W., Nutland, S., Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S.C.L., Clayton, D.G., and Todd, J.A. Haplotype tagging for the identification of common disease genes. Nature Gen., 29, 233–237, 2001.

    Article  Google Scholar 

  15. Kececioglu, J. and Gusfield, D. Reconstructing a history of recombinations from a set of sequences. Disc. Appl. Math., 88, 239–260, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  16. Kimura, M. Theoretical foundations of population genetics at the molecular level. Theoret. Pop. Biol., 2, 174–208, 1971.

    Article  Google Scholar 

  17. Maynard Smith, J. Analyzing the mosaic structure of genes. J. Mol. Evol., 34, 126–129, 1992.

    Google Scholar 

  18. Maynard Smith, J. and Smith, N.H. Detecting recombination from gene trees. Mol. Biol. Evol., 15, 590–599, 1998.

    Google Scholar 

  19. Nickerson, D. A., Taylor, S. L., Fullerton, S. M., Weiss, K. M., Clark, A. G., Stengrd, J. H., Salomaa, V., Boerwinkle, E., and Sing, C. F. Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Gen. Res., 10, 1532–1545, 2000.

    Article  Google Scholar 

  20. Patil, N., Berno, A.J., Hinds, D.A., Barrett, W.A., Doshi, J.M., Hacker, C.R., Kautzer, C.R., Lee, D.H., Marjoribanks, C., McDonough, D.P., Nguyen, B.T.N., Norris, M.C., Sheehan, J.B., Shen, N., Stern, D., Stokowski, R.P., Thomas, D.J., Trulson, M.O., Vyas, K.R., Frazer, K.A., Fodor, S.P.A., and Cox, D.R. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science, 294, 1719–1723, 2001.

    Article  Google Scholar 

  21. Posada, D., and Crandall, K.A. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc. Natl. Acad. Sci. USA, 98, 13757–13762, 2001.

    Google Scholar 

  22. Sawyer, S. Statistical tests for detecting gene conversion. Mol. Biol. Evol., 6, 526–536, 1989.

    Google Scholar 

  23. Spang, R., Rehmsmeier, M., and Stoye, J. Sequence database search using jumping alignments. In Proc. Intel. Sys. Mol. Biol., ISMB’00, 367–375, 2000.

    Google Scholar 

  24. Stephens, M., Smith, N.J., and Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Gen., 68, 978–989, 2001.

    Article  Google Scholar 

  25. Venter, J.C., Adams, M.D., Myers, E.W., et al. The sequence of the human genome. Science, 291, 1304–1351, 2001.

    Article  Google Scholar 

  26. Wang, L. Zhang, K., and Zhang, L. Perfect phylogentic networks with recombination. J. Comp. Biol., 8, 69–78, 2001.

    Article  Google Scholar 

  27. Weiler, G. F. Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol. Biol. Evol., 15, 326–335, 1998.

    Google Scholar 

  28. Wiuf, C., Christensen, T., and Hein, J. A simulation study of the reliability of recombination detection methods. Mol. Biol. Evol., 18,1929–1939, 2001.

    Google Scholar 

  29. Zhang, K., Deng, M., Chen, T., Waterman, M. S., and Sun, F. A dynamic programming algorithm for haplotype block partition. Proc. Natl. Acad. Sci. USA, 99, 7335–7339, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwartz, R., Clark, A.G., Istrail, S. (2002). Methods for Inferring Block-Wise Ancestral History from Haploid Sequences. In: Guigó, R., Gusfield, D. (eds) Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science, vol 2452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45784-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45784-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44211-0

  • Online ISBN: 978-3-540-45784-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics