Abstract
Numerical computations form an essential part of almost any real-world program. Clearly, in order for a termination analyser to be of practical use it should contain a mechanism for inferring termination of such computations. However, this topic attracted less attention of the research community. In this work we concentrate on automatic termination inference for logic programs depending on numerical computations. Dershowitz et al. [8] showed that termination of general numerical computations, for instance on floating point numbers, may be counter-intuitive, i.e., the observed behaviour does not necessarily coincide with the theoretically expected one. Thus, we restrict ourselves to integer computations only.
supported by GOA: “LP +: a second generation logic programming language”.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
K.R. Apt. From Logic Programming to Prolog. Prentice-Hall Int. Series in Computer Science. Prentice Hall, 1997.
K.R. Apt, E. Marchiori, and C. Palamidessi. A declarative approach for first order built-in’s in prolog. Applicable Algebra in Engineering, Communication and Computation, 5(3/4):159–191, 1994.
A. Bossi and N. Cocco. Preserving universal temination through unfold/fold. In G. Levi and M. Rodrýguez-Artalejo, editors, Algebraic and Logic Programming,pages 269–286. Springer Verlag, 1994. LNCS 850.
L. Colussi, E. Marchiori, and M. Marchiori. On termination of constraint logic programs. In U. Montanari and F. Rossi, editors, Principles and Practice of Constraint Programming-CP’95,, pages 431–448. Springer Verlag, 1995. LNCS 976.
D. De Schreye, K. Verschaetse, and M. Bruynooghe. A framework for analyzing the termination of definite logic programs with respect to call patterns. In I. Sta., editor, Proc. of the Int. Conf. on Fifth Generation Computer Systems., pages 481–488. IOS Press, 1992.
S. Decorte, D. De Schreye. Termination analysis: some practical properties of the norm and level mapping space. In J. Jafar, editor, Proc. of the 1998 Joint Int.Conf. and Symp. on Logic Programming, pages 235–249. MIT Press, June 1998.
S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint-based termination analysis of logic programs. ACM Transactions on Programming Languages and Systems (TOPLAS), 21(6):1137–1195, November 1999.
N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general framework for automatic termination analysis of logic programs. Applicable Algebra in Engineering, Communication and Computing, 12(1–2):117–156, 2001.
N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.In L. Naish, editor, Proc. of the Fourteenth Int. Conf. on Logic Programming, pages 63–77. MIT Press, July 1997.
F. Mesnard. Inferring left-terminating classes of queries for constraint logic programs.In M. Maher, editor, Proc. JICSLP’96, pages 7–21. The MIT Press, 1996.
C. Pollard and I. A. Sag. Head-driven Phrase Structure Grammar. The University of Chicago Press, 1994.
S. Ruggieri. Verification and validation of logic programs. PhD thesis, Universitá di Pisa, 1999.
A. Serebrenik and D. De Schreye. Inference of termination conditions for numerical loops. Technical Report CW 308, Departement Computerwetenschappen,K.U.Leuven, Leuven, Belgium, 2001.
A. Serebrenik and D. De Schreye. Non-transformational termination analysis of logic programs, based on general term-orderings. In K.-K. Lau, editor, Logic BasedProgram Synthesis and Transformation 10th International Workshop, Selected Papers, volume 2042 of Lecture Notes in Computer Science, pages 69–85. Springer Verlag, 2001.
L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1994.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Serebrenik, A., De Schreye, D. (2001). Inference of Termination Conditions for Numerical Loops in Prolog. In: Nieuwenhuis, R., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2001. Lecture Notes in Computer Science(), vol 2250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45653-8_45
Download citation
DOI: https://doi.org/10.1007/3-540-45653-8_45
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42957-9
Online ISBN: 978-3-540-45653-7
eBook Packages: Springer Book Archive