[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

T-Fuzzy Hyperalgebraic Systems

  • Conference paper
  • First Online:
Advances in Soft Computing — AFSS 2002 (AFSS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2275))

Included in the following conference series:

Abstract

In this paper first by considering the notions of hyperalgebraic structures such as hypergroups, polygroups, hyperrings, …, we define the notion of (sub) hyperalgebraic systems in general, also we define the notions of T-fuzzy (weak) hyperalgebraic systems, which are the generalization of fuzzy hyperalgebraic structures. Then we give some related basic results .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ameri, R., Zahedi, M.M.: Hypergroup and join spaces induced by a fuzzy subset, PU.M.A,Vol.8 (19997) 155–168.

    Google Scholar 

  2. Ameri, R., Zahedi, M.M.: Fuzzy subhypermodules over fuzzy hyperrings, Sixth International Congress on AHA, Democritus Univ., (1996), 1–14.

    Google Scholar 

  3. Ameri R., Zahedi, M.M: Hyperalgebraic Systems, Italian Journal of Pure and Applied Mathematics, No. 6 (1999), 21–32.

    MATH  MathSciNet  Google Scholar 

  4. Burrs, S., Sankapponavar, H.P: A Course in Universal Algebra, Springer-Verlag (1981).

    Google Scholar 

  5. Bhattacharya, P., Mukherjee, N.P, Fuzzy relations and fuzzy groups, Inform. Sci., 36 (1985), 267–282.

    Article  MATH  MathSciNet  Google Scholar 

  6. Comer, D.S.: Polygroups derived from cogorups,Journal of Algebra,Vol.89, (1984) 397–405.

    Article  MATH  MathSciNet  Google Scholar 

  7. Corsini, P.: Prolegomena of Hypergroup Theory, Aviani Editor, (1993).

    Google Scholar 

  8. Das, P.S: Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981), 264–269.

    Article  MATH  MathSciNet  Google Scholar 

  9. Klement, P.E, Mesier R.: Triangular Norms,Tatra Mountains Math.Publ. 13(1997)169–193.

    MATH  Google Scholar 

  10. Marty, F.: Sur une généralization de la notion de groupe, Huitieme congress de Mathematiciens, Scandinaves, Stockholm, (1934), 45–49.

    Google Scholar 

  11. Rosenfeld, A.: Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517.

    Article  MATH  MathSciNet  Google Scholar 

  12. Tu, Lu., Wen-Xiang Gu: Fuzzy algebraic systems (I): Direct products, Fuzzy Sets and Systems 61(1994), 313–327.

    Article  MATH  MathSciNet  Google Scholar 

  13. Wall, H.S.: Hypergroups, Amer. J. Math., (1937), 77–98.

    Google Scholar 

  14. Zadeh, L.A.: Fuzzy Sets, Inform. and Control, 8 (1965), 338–353.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ameri, R., Zahedi, M.M. (2002). T-Fuzzy Hyperalgebraic Systems. In: Pal, N.R., Sugeno, M. (eds) Advances in Soft Computing — AFSS 2002. AFSS 2002. Lecture Notes in Computer Science(), vol 2275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45631-7_70

Download citation

  • DOI: https://doi.org/10.1007/3-540-45631-7_70

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43150-3

  • Online ISBN: 978-3-540-45631-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics