Abstract
The Projective Reed-Muller codes (PRM codes) were introduced by G. Lachaud [4] in 1988. A change in the choice of the set of representatives of the projective space gives two PRM codes that are not equivalent by permutation. In this paper, we present some criteria in the choice of the set of representatives to construct cyclic or quasi-cyclic PRM codes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
T.P. Berger: Automorphism Groups of Homogeneous and Projective Reed-Muller Codes, submitted.
T.P. Berger: Groupes d’automorphismes des codes de Reed-Muller homogénes et projectifs, C.R. Acad. Sci. Paris, 331 série I, 935–938, 2000.
A.B. Sorensen: Projective Reed-Muller Codes, IEEE Trans. Inform. Theory, vol.IT-37, 6, 1567–1576, 1991.
G. Lachaud: Projective Reed-Muller Codes, Lect. Notes in Comp. Sci., 311, Berlin, Springer,1988.
G. Lachaud: The parameters of projective Reed-Muller codes, Discret Math., 81, 217–221, 1990.
G. Lachaud, I. Lucien, D.J. Mercier, R. Rolland: Group Structure on projective Spaces and Cyclic Codes over Finite Fields, to appear in Finite Fields and Their Applications.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Berger, T.P., de Maximy, L. (2001). Cyclic Projective Reed-Muller Codes. In: Boztaş, S., Shparlinski, I.E. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2001. Lecture Notes in Computer Science, vol 2227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45624-4_8
Download citation
DOI: https://doi.org/10.1007/3-540-45624-4_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42911-1
Online ISBN: 978-3-540-45624-7
eBook Packages: Springer Book Archive