[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cyclic Projective Reed-Muller Codes

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2227))

  • 802 Accesses

Abstract

The Projective Reed-Muller codes (PRM codes) were introduced by G. Lachaud [4] in 1988. A change in the choice of the set of representatives of the projective space gives two PRM codes that are not equivalent by permutation. In this paper, we present some criteria in the choice of the set of representatives to construct cyclic or quasi-cyclic PRM codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T.P. Berger: Automorphism Groups of Homogeneous and Projective Reed-Muller Codes, submitted.

    Google Scholar 

  2. T.P. Berger: Groupes d’automorphismes des codes de Reed-Muller homogénes et projectifs, C.R. Acad. Sci. Paris, 331 série I, 935–938, 2000.

    MATH  Google Scholar 

  3. A.B. Sorensen: Projective Reed-Muller Codes, IEEE Trans. Inform. Theory, vol.IT-37, 6, 1567–1576, 1991.

    Article  MathSciNet  Google Scholar 

  4. G. Lachaud: Projective Reed-Muller Codes, Lect. Notes in Comp. Sci., 311, Berlin, Springer,1988.

    Google Scholar 

  5. G. Lachaud: The parameters of projective Reed-Muller codes, Discret Math., 81, 217–221, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Lachaud, I. Lucien, D.J. Mercier, R. Rolland: Group Structure on projective Spaces and Cyclic Codes over Finite Fields, to appear in Finite Fields and Their Applications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, T.P., de Maximy, L. (2001). Cyclic Projective Reed-Muller Codes. In: Boztaş, S., Shparlinski, I.E. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2001. Lecture Notes in Computer Science, vol 2227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45624-4_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45624-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42911-1

  • Online ISBN: 978-3-540-45624-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics