Abstract
Codes over F[inqm that form vector spaces over F q are called Fq-linear codes over Fqm. Among these we consider only cyclic codes and call them F q -linear cyclic codes (F q LC codes) over [itFqm. This class of codes includes as special cases (i) group cyclic codes over elementary abelian groups (q = p, a prime), (ii) subspace subcodes of Reed-Solomon codes and (iii) linear cyclic codes over Fq (m=1). Transform domain characterization of F q LC codes is obtained using Discrete Fourier Transform (DFT) over an extension field of F q m. We show how one can use this transform domain structures to estimate a minimum distance bound for the corresponding quasicyclic code by BCH-like argument.
This work was partly supported by CSIR, India, through Research Grant (22(0298)/99/EMR-II) to B. S. Rajan
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley, 1983.
J. Conan and G. Seguin, “Structural Properties and Enumeration of Quasi Cyclic Codes”, Applicable Algebra in Engineering Communication and Computing, pp. 25–39, Springer-Verlag 1993.
B. K. Dey and B. Sundar Rajan, “DFT Domain Characterization of Quasi-Cyclic Codes”, Submitted to IEEE Trans. Inform. Theory.
G. D. Forney Jr., Geometrically Uniform Codes, IEEE Trans. Inform. Theory,IT-37 (1991), pp. 1241–1260.
G. D. Forney Jr., On the Hamming Distance Properties of Group Codes, IEEE Trans. Inform. Theory, IT-38 (1992), pp. 1797–1801.
G. Gunther, A Finite Field Fourier Transform for Vectors of Arbitrary Length, Communications and Cryptography: Two Sides of One Tapestry, R. E. Blahut, D. J. Costello, U. Maurer, T. Mittelholzer (Eds), Kluwer Academic Pub., 1994.
M. Hattori, R. J. McEliece and G. Solomon, Subspace Subcodes of Reed-Solomon Codes, IEEE Trans. Inform. Theory, IT-44 (1998), pp. 1861–1880.
M. Isaksson and L. H. Zetterberg, Block-Coded M-PSK Modulation over GF(M), IEEE Trans. Inform. Theory, IT-39 (1993), pp. 337–346.
K. Lally and P. Fitzpatrick, “Algebraic Structure of Quasicyclic Codes”, to appear in Discrete Applied Mathematics.
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, vol. 20, Cambridge University Press.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1988.
McDonald B. R., Finite rings with identity, Marcel Dekker, NewYork, 1974.
M. Ran and J. Snyders, A Cyclic [6,3,4] group code and the hexacode over GF(4)”, IEEE Trans. Inform. Theory, IT-42 (1996), pp. 1250–1253.
B. Sundar Rajan and M. U. Siddiqi, Transform Domain Characterization of Cyclic Codes over Zm, Applicable Algebra in Engineering, Communication and Computing, Vol. 5, No. 5, pp. 261–276, 1994.
B. Sundar Rajan and M. U. Siddiqi, A Generalized DFT for Abelian Codes overZm, IEEE Trans. Inform. Theory, IT-40 (1994), pp. 2082–2090.
B. Sundar Rajan and M. U. Siddiqi, Transform Domain Characterization of Abelian Codes, IEEE Trans. Inform. Theory, IT-38 (1992), pp. 1817–1821.
B. Sundar Rajan and M. U. Siddiqi, Transform Decoding of BCH Codes over Zm, International J. of Electronics, Vol 75, No. 6, pp. 1043–1054, 1993.
R. M. Tanner, “A Transform Theory for a Class of Group-Invariant Codes”, IEEE Trans. Inform. Theory, vol. 34, pp. 752–775, July 1988.
A. A. Zain and B. Sundar Rajan, Algebraic Characterization of MDS Group Codes over Cyclic Groups, IEEE Trans. Inform. Theory, IT-41 (1995), pp. 2052–2056.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kumar Dey, B., Sundar Rajan, B. (2001). F q -Linear Cyclic Codes over F q m: DFT Characterization. In: Boztaş, S., Shparlinski, I.E. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2001. Lecture Notes in Computer Science, vol 2227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45624-4_7
Download citation
DOI: https://doi.org/10.1007/3-540-45624-4_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42911-1
Online ISBN: 978-3-540-45624-7
eBook Packages: Springer Book Archive