[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

F q -Linear Cyclic Codes over F q m: DFT Characterization

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2227))

Abstract

Codes over F[inqm that form vector spaces over F q are called Fq-linear codes over Fqm. Among these we consider only cyclic codes and call them F q -linear cyclic codes (F q LC codes) over [itFqm. This class of codes includes as special cases (i) group cyclic codes over elementary abelian groups (q = p, a prime), (ii) subspace subcodes of Reed-Solomon codes and (iii) linear cyclic codes over Fq (m=1). Transform domain characterization of F q LC codes is obtained using Discrete Fourier Transform (DFT) over an extension field of F q m. We show how one can use this transform domain structures to estimate a minimum distance bound for the corresponding quasicyclic code by BCH-like argument.

This work was partly supported by CSIR, India, through Research Grant (22(0298)/99/EMR-II) to B. S. Rajan

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley, 1983.

    Google Scholar 

  2. J. Conan and G. Seguin, “Structural Properties and Enumeration of Quasi Cyclic Codes”, Applicable Algebra in Engineering Communication and Computing, pp. 25–39, Springer-Verlag 1993.

    Google Scholar 

  3. B. K. Dey and B. Sundar Rajan, “DFT Domain Characterization of Quasi-Cyclic Codes”, Submitted to IEEE Trans. Inform. Theory.

    Google Scholar 

  4. G. D. Forney Jr., Geometrically Uniform Codes, IEEE Trans. Inform. Theory,IT-37 (1991), pp. 1241–1260.

    Article  MathSciNet  Google Scholar 

  5. G. D. Forney Jr., On the Hamming Distance Properties of Group Codes, IEEE Trans. Inform. Theory, IT-38 (1992), pp. 1797–1801.

    Article  MathSciNet  Google Scholar 

  6. G. Gunther, A Finite Field Fourier Transform for Vectors of Arbitrary Length, Communications and Cryptography: Two Sides of One Tapestry, R. E. Blahut, D. J. Costello, U. Maurer, T. Mittelholzer (Eds), Kluwer Academic Pub., 1994.

    Google Scholar 

  7. M. Hattori, R. J. McEliece and G. Solomon, Subspace Subcodes of Reed-Solomon Codes, IEEE Trans. Inform. Theory, IT-44 (1998), pp. 1861–1880.

    Article  MathSciNet  Google Scholar 

  8. M. Isaksson and L. H. Zetterberg, Block-Coded M-PSK Modulation over GF(M), IEEE Trans. Inform. Theory, IT-39 (1993), pp. 337–346.

    Article  MathSciNet  Google Scholar 

  9. K. Lally and P. Fitzpatrick, “Algebraic Structure of Quasicyclic Codes”, to appear in Discrete Applied Mathematics.

    Google Scholar 

  10. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, vol. 20, Cambridge University Press.

    Google Scholar 

  11. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1988.

    Google Scholar 

  12. McDonald B. R., Finite rings with identity, Marcel Dekker, NewYork, 1974.

    MATH  Google Scholar 

  13. M. Ran and J. Snyders, A Cyclic [6,3,4] group code and the hexacode over GF(4)”, IEEE Trans. Inform. Theory, IT-42 (1996), pp. 1250–1253.

    Article  Google Scholar 

  14. B. Sundar Rajan and M. U. Siddiqi, Transform Domain Characterization of Cyclic Codes over Zm, Applicable Algebra in Engineering, Communication and Computing, Vol. 5, No. 5, pp. 261–276, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Sundar Rajan and M. U. Siddiqi, A Generalized DFT for Abelian Codes overZm, IEEE Trans. Inform. Theory, IT-40 (1994), pp. 2082–2090.

    Article  Google Scholar 

  16. B. Sundar Rajan and M. U. Siddiqi, Transform Domain Characterization of Abelian Codes, IEEE Trans. Inform. Theory, IT-38 (1992), pp. 1817–1821.

    Article  Google Scholar 

  17. B. Sundar Rajan and M. U. Siddiqi, Transform Decoding of BCH Codes over Zm, International J. of Electronics, Vol 75, No. 6, pp. 1043–1054, 1993.

    Article  Google Scholar 

  18. R. M. Tanner, “A Transform Theory for a Class of Group-Invariant Codes”, IEEE Trans. Inform. Theory, vol. 34, pp. 752–775, July 1988.

    Google Scholar 

  19. A. A. Zain and B. Sundar Rajan, Algebraic Characterization of MDS Group Codes over Cyclic Groups, IEEE Trans. Inform. Theory, IT-41 (1995), pp. 2052–2056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar Dey, B., Sundar Rajan, B. (2001). F q -Linear Cyclic Codes over F q m: DFT Characterization. In: Boztaş, S., Shparlinski, I.E. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2001. Lecture Notes in Computer Science, vol 2227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45624-4_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45624-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42911-1

  • Online ISBN: 978-3-540-45624-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics