[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hoare Logic for NanoJava: Auxiliary Variables, Side Effects, and Virtual Methods Revisited

  • Conference paper
  • First Online:
FME 2002:Formal Methods—Getting IT Right (FME 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2391))

Included in the following conference series:

  • 313 Accesses

Abstract

We define NanoJava, a kernel of Java tailored to the investigation of Hoare logics. We then introduce a Hoare logic for this language featuring an elegant approach for expressing auxiliary variables: by universal quantification on the outer logical level. Furthermore, we give simple means of handling side-effecting expressions and dynamic binding within method calls. The logic is proved sound and (relatively) complete using Isabelle/HOL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Theory and Practice of Software Development, volume 1214 of Lect. Notes in Comp. Sci., pages 682–696. Springer-Verlag, 1997.

    Google Scholar 

  2. P. America and F. de Boer. Proving total correctness of recursive procedures. Information and Computation, 84:129–162, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. R. Apt. Ten years of Hoare logic: A survey — part I. ACM Trans. on Prog. Languages and Systems, 3:431–483, 1981.

    Article  MATH  Google Scholar 

  4. S.A. Cook. Soundness and completeness of an axiom system for program verification. SIAM Journal on Computing, 7(1):70–90, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. A. Gorelick. A complete axiomatic system for proving assertions about recursive and non-recursive programs. Technical Report 75, Department of Computer Science, University of Toronto, 1975.

    Google Scholar 

  6. M. Huisman. Java program verification in Higher-order logic with PVS and Isabelle. PhD thesis, University of Nijmegen, 2001.

    Google Scholar 

  7. M. Huisman and B. Jacobs. Java program verification via a Hoare logic with abrupt termination. In Fundamental Approaches to Software Engineering, volume 1783 of Lect. Notes in Comp. Sci., pages 284–303. Springer-Verlag, 2000.

    Google Scholar 

  8. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ. In ACM Symposium on Object Oriented Programming: Systems, Languages, and Applications (OOPSLA), Oct. 1999. Full version in ACM Transactions on Programming Languages and Systems (TOPLAS), 2001.

    Google Scholar 

  9. B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Hussmann, editor, Fundamental Approaches to Software Engineering, volume 2029 of Lect. Notes in Comp. Sci., pages 284–299. Springer-Verlag, 2001.

    Google Scholar 

  10. T. Kleymann. Hoare logic and VDM: Machine-checked soundness and completeness proofs. Ph.D. Thesis, ECS-LFCS-98-392, LFCS, 1998.

    Google Scholar 

  11. T. Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Computing, 11:541–566, 1999.

    Article  MATH  Google Scholar 

  12. T. Kowaltowski. Axiomatic approach to side effects and general jumps. Acta Informatica, 7:357–360, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. R. M. Leino. Ecstatic: An object-oriented programming language with an axiomatic semantics. In Fourth International Workshop on Foundations of Object-Oriented Programming (FOOL 4), 1997.

    Google Scholar 

  14. J. Morris. Comments on “procedures and parameters”. Undated and unpublished.

    Google Scholar 

  15. T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook. In V. Chandru and V. Vinay, editors, Foundations of Software Technology and Theoretical Computer Science, volume 1180 of Lect. Notes in Comp. Sci., pages 180–192. Springer-Verlag, 1996.

    Google Scholar 

  16. T. Nipkow. Hoare logics for recursive procedures and unbounded nondeterminism. Draft, 2001.

    Google Scholar 

  17. T. Nipkow. Hoare logics in Isabelle/HOL. In Proof and System-Reliability, 2002.

    Google Scholar 

  18. T. Nipkow, D. v. Oheimb, and C. Pusch. μJava: Embedding a programming language in a theorem prover. In F. Bauer and R. Steinbrüggen, editors, Foundations of Secure Computation, pages 117–144. IOS Press, 2000. http://isabelle.in.tum.de/Bali/papers/MOD99.html.

  19. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. http://www4.in.tum.de/~nipkow/LNCS2283/.

    MATH  Google Scholar 

  20. D. v. Oheimb. Hoare logic for mutual recursion and local variables. In C. P. Rangan, V. Raman, and R. Ramanujam, editors, Foundations of Software Technology and Theoretical Computer Science, volume 1738 of Lect. Notes in Comp. Sci., pages 168–180. Springer-Verlag, 1999. http://isabelle.in.tum.de/Bali/papers/FSTTCS99.html.

  21. D. v. Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare Logic. PhD thesis, Technische Universität München, 2001. http://www4.in.tum.de/~oheimb/diss/.

  22. D. v. Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and Computation: Practice and Experience, 13(13), 2001. http://isabelle.in.tum.de/Bali/papers/CPE01.html.

  23. A. Poetzsch-Heffter. Personal communication, Aug. 2001.

    Google Scholar 

  24. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. Swierstra, editor, Programming Languages and Systems (ESOP’ 99), volume 1576 of Lect. Notes in Comp. Sci., pages 162–176. Springer-Verlag, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

von Oheimb, D., Nipkow, T. (2002). Hoare Logic for NanoJava: Auxiliary Variables, Side Effects, and Virtual Methods Revisited. In: Eriksson, LH., Lindsay, P.A. (eds) FME 2002:Formal Methods—Getting IT Right. FME 2002. Lecture Notes in Computer Science, vol 2391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45614-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45614-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43928-8

  • Online ISBN: 978-3-540-45614-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics