[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Decidability and Closure Properties of Equational Tree Languages

  • Conference paper
  • First Online:
Rewriting Techniques and Applications (RTA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2378))

Included in the following conference series:

Abstract

Equational tree automata provide a powerful tree language framework that facilitates to recognize congruence closures of tree languages. In the paper we show the emptiness problem for AC-tree automata and the intersection-emptiness problem for regular AC-tree automata, each of which was open in our previous work [20], are decidable, by a straightforward reduction to the reachability problem for ground AC-term rewriting. The newly obtained results generalize decidability of so-called reachable property problem of Mayr and Rusinowitch [17]. We then discuss complexity issue of AC-tree automata. Moreover, in order to solve some other questions about regular A- and AC-tree automata, we recall the basic connection between word languages and tree languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Bogaert and S. Tison: Equality and Disequality constraints on Direct Subterms in Tree Automata, Proc. of 9th STACS, Cachan (France), LNCS 577, pp. 161–171 1992.

    Google Scholar 

  2. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison and M. Tommasi: Tree Automata Techniques and Applications, draft, 1999. Available on http://www.grappa.univ-lille3.fr/tata/

  3. A. Deruyver and R. Gilleron: The Reachability Problem for Ground TRS and Some Extensions, Proc. of 14th CAAP, Barcelona (Spain), LNCS 351, pp. 227–243, 1989.

    Google Scholar 

  4. J. Esparza: Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes, Fundamenta Informaticae 31(1), pp. 13–25, 1997.

    MATH  MathSciNet  Google Scholar 

  5. M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman & Company, New York, 1979.

    MATH  Google Scholar 

  6. F. Gécseg and M. Steinby: Tree Automata, Akadémiai Kiadó, Budapest, 1984.

    MATH  Google Scholar 

  7. T. Genet and F. Klay: Rewriting for Cryptographic Protocol Verification, Proc. of 17th CADE, Pittsburgh (PA), LNCS 1831, pp. 271–290, 2000.

    Google Scholar 

  8. J.E. Hopcroft and J.D. Ullman: Introduction to Automata Theory, Languages, and Computation, Addison-Wesley Publishing Company, 1979.

    Google Scholar 

  9. H. Hosoya, J. Vouillon and B.C. Pierce: Regular Expression Types for XML, Proc. of 5th ICFP, Montreal (Canada), SIGPLAN Notices 35(9), pp. 11–22, 2000.

    Article  Google Scholar 

  10. Y. Kaji, T. Fujiwara and T. Kasami: Solving a Unification Problem under Constrained Substitutions Using Tree Automata, JSC 23(1), pp. 79–117, 1997.

    MATH  MathSciNet  Google Scholar 

  11. M. Kudlek and V. Mitrana: Normal Forms of Grammars, Finite Automata, Abstract Families, and Closure Properties of Macrosets, Multiset Processing, LNCS 2235, pp. 135–146, 2001.

    Chapter  Google Scholar 

  12. S. LaTorre and M. Napoli: Timed Tree Automata with an Application to Temporal Logic, Acta Informatica 38(2), pp. 89–116, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Lugiez: A Good Class of Tree Automata and Application to Inductive Theorem Proving, Proc. of 25th ICALP, Aalborg (Denmark), LNCS 1443, pp. 409–420, 1998.

    Google Scholar 

  14. D. Lugiez and J.L. Moysset: Tree Automata Help One to Solve Equational Formulae in AC-Theories, JSC 18(4), pp. 297–318, 1994.

    MATH  MathSciNet  Google Scholar 

  15. E.W. Mayr: An Algorithm for the General Petri Net Reachability Problem, SIAM J. Comput. 13(3), pp. 441–460, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Mayr and M. Rusinowitch: Reachability is Decidable for Ground AC Rewrite Systems, Proc. of 3rd INFINITY, Aalborg (Denmark), 1998. Draft available from http://www.informatik.uni-freiburg.de/~mayrri/ac.ps

  17. R. Mayr and M. Rusinowitch: Process Rewrite Systems, Information and Computation 156, pp. 264–286, 1999.

    Article  Google Scholar 

  18. J. Millen and V. Shmatikov: Constraint Solving for Bounded-Process Cryptographic Protocol Analysis, Proc. of 8th CCS, Philadelphia (PA), pp. 166–175, 2001.

    Google Scholar 

  19. D. Monniaux: Abstracting Cryptographic Protocols with Tree Automata, Proc. of 6th SAS, Venice (Italy), LNCS 1694, pp. 149–163, 1999.

    Google Scholar 

  20. H. Ohsaki: Beyond Regularity: Equational Tree Automata for Associative and Commutative Theories, Proc. of 15th CSL, Paris (France), LNCS 2142, pp. 539–553, 2001.

    Google Scholar 

  21. R.J. Parikh: On Context-Free Languages, JACM 13(4), pp. 570–581, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  22. X. Rival and J. Goubault-Larrecq: Experiments with Finite Tree Automata in Coq, Proc. of 14th TPHOLs, Edinburgh (Scotland), LNCS 2152, pp. 362–377, 2001.

    Google Scholar 

  23. B. Schneier: Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second Edition, John Wiley & Sons, 1996.

    Google Scholar 

  24. H. Seki, T. Takai, Y. Fujinaka and Y. Kaji: Layered Transducing Term Rewriting System and Its Recognizability Preserving Property, Proc. of 13th RTA, Copenhagen (Denmark), 2002. To appear in LNCS.

    Google Scholar 

  25. T. Takai, Y. Kaji and H. Seki: Right-Linear Finite-Path Overlapping Term Rewriting Systems Effectively Preserve Recognizability, Proc. of 11th RTA, Norwich (UK), LNCS 1833, pp. 246–260, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohsaki, H., Takai, T. (2002). Decidability and Closure Properties of Equational Tree Languages. In: Tison, S. (eds) Rewriting Techniques and Applications. RTA 2002. Lecture Notes in Computer Science, vol 2378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45610-4_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45610-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43916-5

  • Online ISBN: 978-3-540-45610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics