[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Rough Measures and Integrals: A Brief Introduction

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2253))

Included in the following conference series:

Abstract

This paper introduces a measure defined in the context of rough sets. Rough set theory provides a variety of set functions that can be studied relative to various measure spaces. In particular, the rough membership function is considered. The particular rough membership function given in this paper is a non-negative set function that is additive. It is an example of a rough measure. The idea of a rough integral is revisited in the context of the discrete Choquet integral that is defined relative to a rough measure. This rough integral computes a form of ordered, weighted “average” of the values of a measurable function. Rough integrals are useful in culling from a collection of active sensors those sensors with the greatest relevance in a problem-solving effort such as classification of a “perceived” phenomenon in the environment of an agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Grabisch, Alternative expressions of the discrete Choquet integral. In: Proc. 7th Int. Fuzzy Systems AssociationWorld Congress (IFSA’97), Prague, 25–29 June 1997, 472–477.

    Google Scholar 

  2. M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals: Theory and Applications, Berlin, Physica-Verlag, 2000.

    MATH  Google Scholar 

  3. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data, Boston, MA, Kluwer Academic Publishers, 1991.

    MATH  Google Scholar 

  4. Z. Pawlak, A. Skowron, Rough membership functions. In: R. Yager, M. Fedrizzi, J. Kacprzyk (Eds.), Advances in the Dempster-Shafer Theory of Evidence, NY, John Wiley & Sons, 1994, 251–271.

    Google Scholar 

  5. Z. Pawlak, On rough derivatives, rough integrals, and rough differential equations. ICS Research Report 41/95, Institute of Computer Science, Nowowiejska 15/19, 00-665 Warsaw, Poland, 1995.

    Google Scholar 

  6. J.F. Peters, S. Ramanna, A. Skowron, J. Stepaniuk, Z. Suraj, M. Borkowski, Sensor fusion: A rough granular approach. In: Proc. of the International Fuzzy Systems Association World Congress (IFSA’01), Vancouver, July 2001 [to appear].

    Google Scholar 

  7. J.F. Peters, S. Ramanna, L. Han, The Choquet integral in a rough software cost estimation system. In: M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals: Theory and Applications. (Springer-Verlag, Heidelberg, Germany, 2000) 392–414.

    Google Scholar 

  8. J.F. Peters, S. Ramanna, A. Skowron, M. Borkowski, Approximate sensor fusion in a navigation agent. In: Proc. Intelligent Agents Technology, Japan, October 2001 [submitted].

    Google Scholar 

  9. J.F. Peters, S. Ramanna, A. Skowron, M. Borkowski, Wireless agent guidance of remote mobile robots: Rough integral Approach to Sensor Signal Analysis. In: Proc. Web Intelligence, Japan, October 2001 [submitted].

    Google Scholar 

  10. A. Skowron, Toward Intelligent Systems: Calculi of Information Granules. In: Proc. RSTGC’01, Bull. Int. Rough Set Society 5(1/2), 2001, 9–30.

    Google Scholar 

  11. R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Trans. on System, Man and Cybernetics 18 (1988) 183–190.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pawlak, Z., Peters, J.F., Skowron, A., Suraj, Z., Ramanna, S., Borkowski, M. (2001). Rough Measures and Integrals: A Brief Introduction. In: Terano, T., Ohsawa, Y., Nishida, T., Namatame, A., Tsumoto, S., Washio, T. (eds) New Frontiers in Artificial Intelligence. JSAI 2001. Lecture Notes in Computer Science(), vol 2253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45548-5_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-45548-5_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43070-4

  • Online ISBN: 978-3-540-45548-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics