Abstract
This paper introduces a measure defined in the context of rough sets. Rough set theory provides a variety of set functions that can be studied relative to various measure spaces. In particular, the rough membership function is considered. The particular rough membership function given in this paper is a non-negative set function that is additive. It is an example of a rough measure. The idea of a rough integral is revisited in the context of the discrete Choquet integral that is defined relative to a rough measure. This rough integral computes a form of ordered, weighted “average” of the values of a measurable function. Rough integrals are useful in culling from a collection of active sensors those sensors with the greatest relevance in a problem-solving effort such as classification of a “perceived” phenomenon in the environment of an agent.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Grabisch, Alternative expressions of the discrete Choquet integral. In: Proc. 7th Int. Fuzzy Systems AssociationWorld Congress (IFSA’97), Prague, 25–29 June 1997, 472–477.
M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals: Theory and Applications, Berlin, Physica-Verlag, 2000.
Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data, Boston, MA, Kluwer Academic Publishers, 1991.
Z. Pawlak, A. Skowron, Rough membership functions. In: R. Yager, M. Fedrizzi, J. Kacprzyk (Eds.), Advances in the Dempster-Shafer Theory of Evidence, NY, John Wiley & Sons, 1994, 251–271.
Z. Pawlak, On rough derivatives, rough integrals, and rough differential equations. ICS Research Report 41/95, Institute of Computer Science, Nowowiejska 15/19, 00-665 Warsaw, Poland, 1995.
J.F. Peters, S. Ramanna, A. Skowron, J. Stepaniuk, Z. Suraj, M. Borkowski, Sensor fusion: A rough granular approach. In: Proc. of the International Fuzzy Systems Association World Congress (IFSA’01), Vancouver, July 2001 [to appear].
J.F. Peters, S. Ramanna, L. Han, The Choquet integral in a rough software cost estimation system. In: M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals: Theory and Applications. (Springer-Verlag, Heidelberg, Germany, 2000) 392–414.
J.F. Peters, S. Ramanna, A. Skowron, M. Borkowski, Approximate sensor fusion in a navigation agent. In: Proc. Intelligent Agents Technology, Japan, October 2001 [submitted].
J.F. Peters, S. Ramanna, A. Skowron, M. Borkowski, Wireless agent guidance of remote mobile robots: Rough integral Approach to Sensor Signal Analysis. In: Proc. Web Intelligence, Japan, October 2001 [submitted].
A. Skowron, Toward Intelligent Systems: Calculi of Information Granules. In: Proc. RSTGC’01, Bull. Int. Rough Set Society 5(1/2), 2001, 9–30.
R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Trans. on System, Man and Cybernetics 18 (1988) 183–190.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pawlak, Z., Peters, J.F., Skowron, A., Suraj, Z., Ramanna, S., Borkowski, M. (2001). Rough Measures and Integrals: A Brief Introduction. In: Terano, T., Ohsawa, Y., Nishida, T., Namatame, A., Tsumoto, S., Washio, T. (eds) New Frontiers in Artificial Intelligence. JSAI 2001. Lecture Notes in Computer Science(), vol 2253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45548-5_49
Download citation
DOI: https://doi.org/10.1007/3-540-45548-5_49
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43070-4
Online ISBN: 978-3-540-45548-6
eBook Packages: Springer Book Archive