[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Toward a Formal Macroset Theory

  • Conference paper
  • First Online:
Multiset Processing (WMC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2235))

Included in the following conference series:

  • 570 Accesses

Abstract

A macroset is a (finite or infinite) set of multisets over a finite alphabet. We introduce a Chomsky-like hierarchy of multiset rewriting devices which, therefore, generate macrosets. Some results are proved about the power of these devices and some open problems are formulated. We also present an algebraic characterization of some of the macroset families as least fixed point solutions of algebraic systems of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Banătre, A. Coutant, D. Le Metayer, A parallel machine for multiset transformationand its programming style, Future Generation Computer Systems, 4 (1988),133–144.

    Article  Google Scholar 

  2. J.P. Banătre, D. Le Metayer, The Gamma model and its discipline of programming,Science of Computer Programming, 15 (1990), 55–77.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. P. Banătre, D. Le Metayer, Gamma and the chemical reaction model: ten yearsafter, Coordination Programming: Mechanisms, Models and Semantics, ImperialCollege Press, 1996.

    Google Scholar 

  4. H.P. Barendregt, The Lambda Calculus; Its Syntaxand Semantics, North-Holland, Amsterdam, 1984.

    Google Scholar 

  5. T. Basten, Parsing partially ordered multisets, Intern. J. Found. Computer Sci.,8, 4 (1997), 379–407.

    Article  MATH  Google Scholar 

  6. G. Berry, G. Boudol, The chemical abstract machine, Theoretical Computer Sci.,96 (1992), 217–248.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Colmerauer, Equations and inequalities on finite and finite trees, Proc. of Second Intern. Conf. on Fifth Generation Computer Systems, Tokyo, 1984, 85–99.

    Google Scholar 

  8. S. Crespi-Reghizzi, D. Mandrioli, Commutative Grammars, Calcolo, 13, 2 (1976),173–189.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  10. J. Dassow, Gh Păun, A. Salomaa, Grammars with Controlled Derivations, in:Handbook of Formal Languages, vol. 2, p 101–154, Springer-Verlag, 1997.

    Google Scholar 

  11. S. Ginsburg, The Mathematical Theory of Context-free Languages, McGraw Hill,1966.

    Google Scholar 

  12. J.L. Gischer, The equational theory of pomsets, Theoretical Computer Sci., 61, 2–3(1988), 199–224.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.S. Golan, The Theory of Semirings with Application in Mathematics and TheoreticalComputer Science, Longman Scientific and Technical, 1992.

    Google Scholar 

  14. S. Gorn, Explicit definitions and linguistic dominoes, in Systems and ComputerScience (J. Hart, S. Takasu, eds.), Univ. of Toronto Press, Toronto, 1967, 77–115.

    Google Scholar 

  15. D.T. Hunyh, Commutative grammars: The complexity of uniform word problem,Inform. Control, 57 (1983), 21–39.

    Article  Google Scholar 

  16. J. Kortelainen, Properties of trios and AFLs with bounded or commutative generators,Mathematics, University of Oulu, No. 53, 1980.

    Google Scholar 

  17. W. Kuich, A. Salomaa, Semirings, Automata, Languages, EATCS Monographs onTheoretical Computer Science 5, Springer-Verlag, Berlin

    Google Scholar 

  18. M. Latteux, Cônes rationnels commutativement clos, R.A.I.R.O., 11, 1 (1977),29–51.

    MATH  MathSciNet  Google Scholar 

  19. M. Latteux, Langages commutatifs, Publications de Laboratoire de Calcul del’Université des Sciences et Techniques de Lille, May 1978.

    Google Scholar 

  20. M. Latteux, Cônes rationnels commutatifs, Journal of Computer System Sciences,18 (1979), 307–333.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Miyamoto, Fuzzy multisets and application to rough approximation of fuzzysets, Techn. Rep. Inst. of Inform. Sciences and Electronics, Univ. of Tsukuba,1SE-TR-96-136, June 1996, 1–10.

    Google Scholar 

  22. S. Miyamoto, Basic operations on fuzzy multisets, J. of Japan Soc. of Fuzzy Theoryand Systems, 8, 4 (1996).

    Google Scholar 

  23. S. Miyamoto, Fuzzy multisets with in finite collections of memberships, Proc. 7thIntern. Fuzzy Systems Ass. World. Congress (IFSA’97), June 1997, Prague, vol. I,61–66.

    Google Scholar 

  24. B. Li, Fuzzy bags and applications, Fuzzy Sets and Systems, 34 (1990), 61–71.

    Article  MATH  MathSciNet  Google Scholar 

  25. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences,61, 1 (2000), 108–143

    Article  MathSciNet  MATH  Google Scholar 

  26. Gh. Păun, Computing with membranes. An introduction, Bulletin of the EATCS,67 (Febr. 1999), 139–152.

    MATH  Google Scholar 

  27. Gh. Păun, Computing with membranes (P systems): Twenty six researchtopics, Auckland University, CDMTCS Report No 119, 2000(http://www.cs.auckland.ac.nz/CDMTCS).

  28. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New ComputingParadigms, Springer-Verlag, Heidelberg, 1998.

    Google Scholar 

  29. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  30. Y. Suzuki, H. Tanaka, Symbolic chemical system based on abstract rewriting systemand its behavior pattern, Artificial Life Robotics, 1 (1997), 211–219.

    Article  Google Scholar 

  31. Y. Suzuki, H. Tanaka, Chemical evolution among artificial proto-cells, Proc. of Artificial Life VIII Conf., MIT Press, 2000

    Google Scholar 

  32. A. Syropoulos, A note on multi-sets, basic pairs and the chemical abstract machine,manuscript, 2000.

    Google Scholar 

  33. A. Syropoulos, Fuzzy sets and fuzzy multisets as Chu spaces, manuscript, 2000.

    Google Scholar 

  34. A. Syropoulos, Multisets and Chu Spaces, PhDThesis, Univ. of Xanti, Greece, inpreparation.

    Google Scholar 

  35. R. R. Yager, On the theory of bags, Intern. J. General Systems, 13 (1986), 23–37.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kudlek, M., Martín-Vide, C., PĂun, G. (2001). Toward a Formal Macroset Theory. In: Calude, C.S., PĂun, G., Rozenberg, G., Salomaa, A. (eds) Multiset Processing. WMC 2000. Lecture Notes in Computer Science, vol 2235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45523-X_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45523-X_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43063-6

  • Online ISBN: 978-3-540-45523-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics