[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Different Kinds of Neural Networks in Control and Monitoring of Hot Rolling Mill

  • Conference paper
  • First Online:
Engineering of Intelligent Systems (IEA/AIE 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2070))

  • 737 Accesses

Abstract

Cutting the costs and increasing the added value of steel products using new production methods and advanced control systems are the key factors in competitiveness of the European steel producers. In order to meet the challenge of the steadily growing pressure to improve the product quality, rolling mills employ extensive automation and sophisticated on-line data sampling techniques. Since the number of factors involved in the processes is very large, it takes time to discover and analyse their quantified influence. The paper gives a survey about the knowledge processing, using neural networks in rolling. The two main streamlines are shown by exemplary case studies: Self Organizing Maps as Data Mining tool for discovering the hidden dependencies among the influencing factors, finding the relevant and irrelevant factors, as well as application of different types of neural networks for optimisation of the draft schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hatvany, J. Efficient Use of Deficient Knowledge, Annals of the CIRP, 1983, Vol. 32/1, pp. 423–425.

    Google Scholar 

  2. L. Cser: Stand der Anwendung von Expertensystemen in der Umformtechnik, Umformtechnik 25 (1991) 4, pp.77–83, Umformtechnik 25 (1992) 1, pp.51-60, Meisenbach Verlag

    Google Scholar 

  3. Larkiola, et al., (1995), Proc. of Materials Processing in the Computer Age II, 209–220, February, Las Vegas, Nevada, USA.

    Google Scholar 

  4. L. Cser, A. S. Korhonen, O. Simula, J. Larkiola, P. Myllykoski, J. Ahola: Knowledge Based Methods in Modelling of Rolling of Steel Strip (Keynote), Proc. of the CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, ICME 98 (Ed. by R. Teti), Capri (Naples), Italy, July 1-3, 1998, 265–272.

    Google Scholar 

  5. Gramckow, O., Jansen, M., Feldkeller, B.: Anwendung Neuronaler Netze für die Prozeßsteuerung, Tagungsband MEFORM 98, 25-27 Februar 1998, pp. 1–23

    Google Scholar 

  6. L. Cser, A. S. Korhonen, J. Gulyás, P. Mäntylä, O. Simula, Gy. Reiss, P. Ruha:Data Mining and State Monitoring in Hot Rolling (Keynote), IPMM’99, The 2nd International Conference on Intelligent Processing and Manufacturing of Materials, Honolulu, Hawaii, July 10/15, 1999, IEEE, Proc. 529–536

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cser, L., Gulyás, J., Szücs, L., Horváth, A., Árvai, L., Baross, B. (2001). Different Kinds of Neural Networks in Control and Monitoring of Hot Rolling Mill. In: Monostori, L., Váncza, J., Ali, M. (eds) Engineering of Intelligent Systems. IEA/AIE 2001. Lecture Notes in Computer Science(), vol 2070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45517-5_86

Download citation

  • DOI: https://doi.org/10.1007/3-540-45517-5_86

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42219-8

  • Online ISBN: 978-3-540-45517-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics