Abstract
Cutting the costs and increasing the added value of steel products using new production methods and advanced control systems are the key factors in competitiveness of the European steel producers. In order to meet the challenge of the steadily growing pressure to improve the product quality, rolling mills employ extensive automation and sophisticated on-line data sampling techniques. Since the number of factors involved in the processes is very large, it takes time to discover and analyse their quantified influence. The paper gives a survey about the knowledge processing, using neural networks in rolling. The two main streamlines are shown by exemplary case studies: Self Organizing Maps as Data Mining tool for discovering the hidden dependencies among the influencing factors, finding the relevant and irrelevant factors, as well as application of different types of neural networks for optimisation of the draft schedule.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hatvany, J. Efficient Use of Deficient Knowledge, Annals of the CIRP, 1983, Vol. 32/1, pp. 423–425.
L. Cser: Stand der Anwendung von Expertensystemen in der Umformtechnik, Umformtechnik 25 (1991) 4, pp.77–83, Umformtechnik 25 (1992) 1, pp.51-60, Meisenbach Verlag
Larkiola, et al., (1995), Proc. of Materials Processing in the Computer Age II, 209–220, February, Las Vegas, Nevada, USA.
L. Cser, A. S. Korhonen, O. Simula, J. Larkiola, P. Myllykoski, J. Ahola: Knowledge Based Methods in Modelling of Rolling of Steel Strip (Keynote), Proc. of the CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, ICME 98 (Ed. by R. Teti), Capri (Naples), Italy, July 1-3, 1998, 265–272.
Gramckow, O., Jansen, M., Feldkeller, B.: Anwendung Neuronaler Netze für die Prozeßsteuerung, Tagungsband MEFORM 98, 25-27 Februar 1998, pp. 1–23
L. Cser, A. S. Korhonen, J. Gulyás, P. Mäntylä, O. Simula, Gy. Reiss, P. Ruha:Data Mining and State Monitoring in Hot Rolling (Keynote), IPMM’99, The 2nd International Conference on Intelligent Processing and Manufacturing of Materials, Honolulu, Hawaii, July 10/15, 1999, IEEE, Proc. 529–536
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cser, L., Gulyás, J., Szücs, L., Horváth, A., Árvai, L., Baross, B. (2001). Different Kinds of Neural Networks in Control and Monitoring of Hot Rolling Mill. In: Monostori, L., Váncza, J., Ali, M. (eds) Engineering of Intelligent Systems. IEA/AIE 2001. Lecture Notes in Computer Science(), vol 2070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45517-5_86
Download citation
DOI: https://doi.org/10.1007/3-540-45517-5_86
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42219-8
Online ISBN: 978-3-540-45517-2
eBook Packages: Springer Book Archive