Abstract
This paper deals with the possibilities to refine the knowledge base of an otoneurological expert system ONE with the knowledge learned from data. The augmented knowledge base produces better results for benign positional vertigo, Menière’s disease, sudden deafness, traumatic vertigo, and vestibular schwannoma. The results of this study suggest that learning from data is useful in refining the knowledge base. However, the knowledge acquired from human experts is also needed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auramo, Y., Juhola, M.: Comparison of inference results of two otoneurological expert systems. Int. J. Bio-Med. Comput. 39 (1995) 327–335
Auramo, Y., Juhola, M., Pyykkö, I.: An expert system for the computer-aided diagnosis of dizziness and vertigo. Med. Inform. 18 (1993) 293–305
Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Prieditis, A., Russell, S. (eds.): Machine Learning: Proceedings of the 12th International Conference. Morgan Kaufmann, San Francisco (1995) 194–202
Juhola, M., Laurikkala, J., Viikki, K., Auramo, Y., Kentala, E., Pyykkö, I.: Neural network recognition of otoneurological vertigo diseases with comparison of some other classification methods. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J. (eds.): Artificial Intelligence in Medicine. Lectures Notes in Artificial Intelligence, Vol. 1620. Springer, Berlin (1999) 217–226
Kentala, E.: A neurotologic expert system for vertigo and characteristics of six otologic diseases involving vertigo. Academic Dissertation, Department of Otorhinolaryngology, University of Helsinki, Finland (1996)
Kentala, E.: Characteristics of six otologic diseases involving vertigo. Am. J. Otol. 17 (1996) 883–892
Kentala, E., Auramo, Y., Juhola, M., Pyykkö, I.: Comparison between diagnoses of human experts and a neurotologic expert system. Ann. Otol. Rhinol. Laryngol. 107 (1998) 135–140
Kentala, E., Laurikkala, J., Pyykkö, I., Juhola, M.: Discovering diagnostic rules from a neurotologic database with genetic algorithms. Ann. Otol. Rhinol. Laryngol. 108 (1999) 948–954
Kohavi, R., John, G. H.: Wrappers for feature subset selection. Artificial Intelligence 97 (1997) 273–324
MATLAB 5.3 (2000) http://www.mathworks.com/
Mitchell, T. M.: Machine Learning. McGraw-Hill, New York (1997)
Viikki, K.: A variable grouping method based on graph theoretic techniques. Report A-2001-1, Department of Computer and Information Sciences, University of Tampere, Finland (2001)
Viikki, K., Kentala, E., Juhola, M., Pyykkö, I.: Decision tree induction in the diagnosis of otoneurological diseases. Med. Inform. 24 (1999) 277–289
Viikki, K., Kentala, E., Juhola, M., Pyykkö, I.: Confounding values in decision trees constructed for six otoneurological diseases. In: Lavrač, N., Miksch, S., Kavšek, B. (eds.): Proceedings of the 5th International Workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-2000), Berlin (2000) 58–60
Wilson, D. R., Martinez, T. R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6 (1997) 1–34
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Viikki, K., Juhola, M. (2001). Refining the Knowledge Base of an Otoneurological Expert System. In: Crespo, J., Maojo, V., Martin, F. (eds) Medical Data Analysis. ISMDA 2001. Lecture Notes in Computer Science, vol 2199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45497-7_42
Download citation
DOI: https://doi.org/10.1007/3-540-45497-7_42
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42734-6
Online ISBN: 978-3-540-45497-7
eBook Packages: Springer Book Archive