[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Refining the Knowledge Base of an Otoneurological Expert System

  • Conference paper
  • First Online:
Medical Data Analysis (ISMDA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2199))

Included in the following conference series:

  • 758 Accesses

Abstract

This paper deals with the possibilities to refine the knowledge base of an otoneurological expert system ONE with the knowledge learned from data. The augmented knowledge base produces better results for benign positional vertigo, Menière’s disease, sudden deafness, traumatic vertigo, and vestibular schwannoma. The results of this study suggest that learning from data is useful in refining the knowledge base. However, the knowledge acquired from human experts is also needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auramo, Y., Juhola, M.: Comparison of inference results of two otoneurological expert systems. Int. J. Bio-Med. Comput. 39 (1995) 327–335

    Article  Google Scholar 

  2. Auramo, Y., Juhola, M., Pyykkö, I.: An expert system for the computer-aided diagnosis of dizziness and vertigo. Med. Inform. 18 (1993) 293–305

    Article  Google Scholar 

  3. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Prieditis, A., Russell, S. (eds.): Machine Learning: Proceedings of the 12th International Conference. Morgan Kaufmann, San Francisco (1995) 194–202

    Google Scholar 

  4. Juhola, M., Laurikkala, J., Viikki, K., Auramo, Y., Kentala, E., Pyykkö, I.: Neural network recognition of otoneurological vertigo diseases with comparison of some other classification methods. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J. (eds.): Artificial Intelligence in Medicine. Lectures Notes in Artificial Intelligence, Vol. 1620. Springer, Berlin (1999) 217–226

    Chapter  Google Scholar 

  5. Kentala, E.: A neurotologic expert system for vertigo and characteristics of six otologic diseases involving vertigo. Academic Dissertation, Department of Otorhinolaryngology, University of Helsinki, Finland (1996)

    Google Scholar 

  6. Kentala, E.: Characteristics of six otologic diseases involving vertigo. Am. J. Otol. 17 (1996) 883–892

    Google Scholar 

  7. Kentala, E., Auramo, Y., Juhola, M., Pyykkö, I.: Comparison between diagnoses of human experts and a neurotologic expert system. Ann. Otol. Rhinol. Laryngol. 107 (1998) 135–140

    Google Scholar 

  8. Kentala, E., Laurikkala, J., Pyykkö, I., Juhola, M.: Discovering diagnostic rules from a neurotologic database with genetic algorithms. Ann. Otol. Rhinol. Laryngol. 108 (1999) 948–954

    Google Scholar 

  9. Kohavi, R., John, G. H.: Wrappers for feature subset selection. Artificial Intelligence 97 (1997) 273–324

    Article  MATH  Google Scholar 

  10. MATLAB 5.3 (2000) http://www.mathworks.com/

  11. Mitchell, T. M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  12. Viikki, K.: A variable grouping method based on graph theoretic techniques. Report A-2001-1, Department of Computer and Information Sciences, University of Tampere, Finland (2001)

    Google Scholar 

  13. Viikki, K., Kentala, E., Juhola, M., Pyykkö, I.: Decision tree induction in the diagnosis of otoneurological diseases. Med. Inform. 24 (1999) 277–289

    Article  Google Scholar 

  14. Viikki, K., Kentala, E., Juhola, M., Pyykkö, I.: Confounding values in decision trees constructed for six otoneurological diseases. In: Lavrač, N., Miksch, S., Kavšek, B. (eds.): Proceedings of the 5th International Workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-2000), Berlin (2000) 58–60

    Google Scholar 

  15. Wilson, D. R., Martinez, T. R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6 (1997) 1–34

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Viikki, K., Juhola, M. (2001). Refining the Knowledge Base of an Otoneurological Expert System. In: Crespo, J., Maojo, V., Martin, F. (eds) Medical Data Analysis. ISMDA 2001. Lecture Notes in Computer Science, vol 2199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45497-7_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-45497-7_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42734-6

  • Online ISBN: 978-3-540-45497-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics