[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Multi-purpose Visual Classification System

  • Conference paper
  • First Online:
Computational Intelligence. Theory and Applications (Fuzzy Days 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2206))

Included in the following conference series:

  • 3575 Accesses

Abstract

A computer vision system which can be trained to classification tasks from sample views is presented. It consists of several artificial neural networks which realize local PCA with subsequent expert nets as classifiers. The major benefit of the approach is that entirely different tasks can be solved with one and the same system without modifications or extensive parameter tuning. Therefore, the architecture is an example for the potential which lies in view based recognition: Making complicated tasks solvable with less and less expert knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S.C. Ahalt, A.K. Krisnamurthy, P. Chen, and D.E. Melton. Competitive learning algorithms for vector quantizaion. Neural Networks, 3:277–290, 1990

    Article  Google Scholar 

  2. E. Braun, G. Heidemann, H. Ritter, and G. Sagerer. A multi-directional multiple pathe recognition scheme for complex objects. Pattern Recognition Letters, special issue on Pattern Recognition in Practice VI, Vlieland, June 99, 1999

    Google Scholar 

  3. Aristides S. Galanopoulos and Stanley C. Ahalt. Codeward distribution for frequency sensitive competitive learning with one-dimensional input data. IEEE Trans. On Neural Networks, 7(3):752–756, 1996.

    Article  Google Scholar 

  4. Aristides S. Galanopoulos, Randolph L. Moses, and Stanley C. Ahalt. Diffusion approximation of frequency sensitive competitive learning. IEEE Trans. On Neural Networks, 8(5):1026–1030, 1997.

    Article  Google Scholar 

  5. S. Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cognitive Sci., 11:23–63, 1987.

    Article  Google Scholar 

  6. G. Heidemann. Ein flexible einsetzbares Objecterkennungssystem auf der Basis neuronaler Netze. PhD thesis, Univ. Bielefeld, Techn. Fak., 1998. Infix, DISKI 190.

    Google Scholar 

  7. G. Heidemann, D. Lücke, and H. Ritter. A system for various visual classification tasks based on neural networks. In A. Sanfeliu et al., editor, Proc. 15th Int. Conf. on Pattern Recognition ICPR 2000, Barcelona, volume I, pages 9–12, 2000.

    Google Scholar 

  8. G. Heidemann, and H. Ritter. Combining multiple neural nets for visual feature selection and classification. In ICANN 99, Ninth International Conference on Artificial Neural Networks, pages 365–370, 1999.

    Google Scholar 

  9. G. Heidemann and H. Ritter. Visual checking of grasping positions of a three-fingered robor hand. In ICANN 2001, 2001. Accepted for publication.

    Google Scholar 

  10. G. Heidemann and H.J. Ritter. Efficient Vector Quantization using the WTA-rule with Activity Equalization. Neural Processing Letters, 13(1): 17–30, 2001.

    Article  MATH  Google Scholar 

  11. T. Kohonen. Self-organized formation of topologically correct feature maps. Biol. Cybernetics, 43:59–69, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Kohonen. Self-organizationa and associative memory. In Springer Series in Information Sciences 8. Springer-Verlag Heidelberg, 1995.

    Google Scholar 

  13. T. Kohonen. Self-Organizing Maps. Springer Verglag, 1995.

    Google Scholar 

  14. T. Martinez, S.G. Berkovich, and K. Schulten. “Neural-gas” network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, 4(4):558–569, 1993.

    Article  Google Scholar 

  15. J. Moody and C. Darken. Learning with localized receptive fields. In Proc. of the 1988 Connectionist Models Summer School, pages 133–143. Morgan Kaufman Publishers, San Mateo, CA, 1988.

    Google Scholar 

  16. H. Murase and S.K. Nayar. Visual learning and recognition of 3-d objects from appearance. Int. Journal of Computer Vision, 14:5–24, 1995.

    Article  Google Scholar 

  17. S.A. Nen, S.K. Nayar, and H. Murase. Columbia object image library: Coil-100. Technical Report CUCS-006-96, Department of Computer Science, Columbia University, 1996.

    Google Scholar 

  18. T. Poggio and S. Edelman. A network that learns to recognize three dimensional objects. Nature, pages 263–266, 1990.

    Google Scholar 

  19. H.J. Ritter, T.M. Martinez, and K.J. Schulten. Neuronale Netze. Addision-Wesley, München, 1992.

    MATH  Google Scholar 

  20. T.D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2:459–473, 1989.

    Article  Google Scholar 

  21. Dirk Strotmann. Lokale Klassifikation als Basis für die Erkennung teilverdeckter Objecte. Master’s thesis, Universität Bielefeld, Technische Fakultät, 1999.

    Google Scholar 

  22. Michael E. Tipping and Christopher M. Bishop. Mixtures of probabilistic principal component analyzers. Neural Computation, 11(2):443–482, February 15 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heidelmann, G. (2001). A Multi-purpose Visual Classification System. In: Reusch, B. (eds) Computational Intelligence. Theory and Applications. Fuzzy Days 2001. Lecture Notes in Computer Science, vol 2206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45493-4_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-45493-4_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42732-2

  • Online ISBN: 978-3-540-45493-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics