Abstract
This abstract describes the current research in the area of autonomously driving of a vehicle along different road courses [1]. The focus of this paper are two main aspects: firstly, parameters of the environment are being extracted from a video image coming from one single camera which is installed in or in front of the vehicle which is to drive along the road course; secondly, the incoming images from the camera need to be processed by a computer system that way, that not only Steering Commands for the vehicle are being generated (for accelerator / brake as well as the steering wheel) but the appropriateness of those Steering Commands is being constantly weighed and continuously improved over time. Consequently, the current work focuses on a system which is able to learn and to develop completely on its own the ability to steer different vehicles in different environments and combines research in the areas of Intelligent Image Processing, Machine Learning and Robotics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Krödel, K.-D. Kuhnert, Towards a Learning Autonomous Driver System, IEEE International Conference on Industrial Electronics, Control and Instrumentation, October 22–28, 2000, Nagoya, Japan
T.M. Jochem, D.A. Pomerleau, C.E. Thorpe, Vision Guided Lane Transition, Intelligent Vehicles’ 95 Symposium, September 25–26, 1995, Detroit/MI, USA
T.M. Jochem, D.A. Pomerleau, C.E. Thorpe. MANIAC: A Next Generation Neurally Based Autonomous Road Follower, IAS-3, Int. Conference on Intelligent autonomous Systems, Feb. 15–18, 1993, Pittsburgh/PA, USA, F.C.A. Groen, S. Hirose, C.E. Thorpe (eds), IOS Press, Washington, Oxford, Amsterdam, Tokyo, 1993
Expectation-based selective attention for visual monitoring and control of a robot vehicle, S. Baluja, D.A. Pomerleau, Robotics and Autonomous System, Vol.22, No.3–4, December 1997
E.D. Dickmanns, A. Zapp, Autonomous High Speed Road Vehicle Guidance by Computer Vision, Preprints of the 10th World Congress on Automatic Control, Vol.4, International Federation of Automatic Control, Munich, Germany, July 27–31, 1987
L. Baird III, Reinforcement Learning through Gradient Descent, Dissertation, Carnegie Mellon University, 1999 Pittsburgh, USA
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krödel, M., Kuhnert, KD. (2001). Autonomous Driving through Intelligent Image Processing and Machine Learning. In: Reusch, B. (eds) Computational Intelligence. Theory and Applications. Fuzzy Days 2001. Lecture Notes in Computer Science, vol 2206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45493-4_70
Download citation
DOI: https://doi.org/10.1007/3-540-45493-4_70
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42732-2
Online ISBN: 978-3-540-45493-9
eBook Packages: Springer Book Archive