[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Clustering of Categoric Data in Medicine — Application of Evolutionary Algorithms

  • Conference paper
  • First Online:
Computational Intelligence. Theory and Applications (Fuzzy Days 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2206))

Included in the following conference series:

Abstract

Clustering on non-metric data sets often occurs in investigations in medicine and social science. The problem is to find suitable measures which describe similaries and, hence, are applicable to the clustering algorithms. In the present contribution we use evolutionary algorithms EA for clustering. Thereyby, the similarity measures determine the respective fitness function for the EA. We consider several fitness functions and derive a new one which allows, additionally, the determination of a useful cluster number. — For the EA we use a new selection starateguy and a multiple subpopulation approach with a migration scheme following the collective learning dynamic in self-organizing maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Buhmann, H. Kühnel, Vector quantization with complexity costs, IEEE Transactions on Information Theory 39 (1993) 1133–1145.

    Article  MATH  Google Scholar 

  2. F. Ermini, C. Marchesi, Intelligent data retrieval from multidimensional clinical archives, in E. Ifeachor, A. Sperduti, A. Starita (Eds.), Neural Networks and Expert Systems in Medicine and Healthcare, World Scientific, Singapore, New Jersey, London, Hongkong, 1998, pp. 295–303.

    Google Scholar 

  3. M. Hasenjäger, H. Ritter, Active learning with local models, Neural Processing Letters 7 (1998) 101–117.

    Article  Google Scholar 

  4. T. Hofmann, J. Buhmann, Pairwise data clustering by deterministic annealing, IEEE Transactions on Pattern Analysis and Machine Intelligence 19(1) (1997) 1–14.

    Article  Google Scholar 

  5. T. Greapel, K. Obermayer, A stochastic self-organizing map for proximity data, Neural Computation 11(1) (1999) 139–155.

    Article  Google Scholar 

  6. T. Villman, Application of evolutionary algorithms for clustering of nonmetric data in medicine, in: G. Brewka, R. Der, S. Gottwald, A. Schierwagen (Eds.), Fuzzy-Neuro-Systems’ (FNS’), Proc. Of the FNS-Workshop, Leipziger Universitätsverlag, Leipzig, 1999, pp. 155–165.

    Google Scholar 

  7. Z. Michaleqicz, Genetic Algorithms + Data Structures = Evolution Programs, third, revised and extended Edition, Springer-Verlag Berlin Heidelberg New York, 1996.

    Google Scholar 

  8. T. Villmann, Neural networks approaches in medicine — a review of actual developments, in: Proc. Of European Symposium on Artificial Neural Networks (ESANN’2000), D factor publications, Brussels, Belgium, 2000, pp. 165–176.

    Google Scholar 

  9. L. Luborsky, The core conflictual relationshio scheme, in N. Freedman, S. Grand (Eds.), Communicative Structure and Psychic Structures, Plenum Press New York, 1977.

    Google Scholar 

  10. P. Crits-Christoph, A. Demorest, List of standard categories (edition 2), in L. Luborsky, H. K:achele (Eds.), Der Zentrale Beziehungskonflickt — ein Arbeitsbuch, PSZ Verlag, Ulm, Germany, 1988.

    Google Scholar 

  11. J. Barber, P. Crits-Christoph. L. Luborsky, A guide to the CCRT Standard Categories and their classification, in L. Luborsky, P. Crits-Chrostoph (Eds.). Understanding Transference, Basic Books New York, 1990, pp. 37–50.

    Google Scholar 

  12. C. Albani, T. Villman, B. Villmann, A. Körner, M. Geyer, D. Pokony, G. Blaser, H. Kächele, Kritik und erste Reformulierung der Kategorialen Strukturen der Methode des Zentralen Beziehungs-Konflict-Themas (XBKT), Psychotheraphie, Psychosomatik und Medizinische Psychologie 49(11) (1999) 408–421.

    Google Scholar 

  13. L. Kaufmann, P. Rousseuw, Finding Groups in Data — A Introduction to Cluster Anallysis, John Wiley, Sons, 1990.

    Google Scholar 

  14. D. B. Fogel, Evolutionary Computation: Towards a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ, 1995.

    Google Scholar 

  15. H. Mühlenbein, M. Gorges-Schleuter, O. Krämer, Evolution Algorithm in Combinatorial Optimization, Parallel Computing (7) (1988) 65–88.

    Google Scholar 

  16. T. Villmann, R. Haupt, K. Hering, H. Schulze, Parallel evolutionary algorithms with som-like migration, in A. Dobnikar, N. Steele, D. W. Pearson, R. Albrecht (Eds.), Artificial Neural Networks and Genetic Algorithms (Proc. Of ICANNGA’99), Springer-Verlag, Wien-New York, 1999, pp. 274–279.

    Google Scholar 

  17. T. Villmann, Evolutionary algorithms with subpopulations using a neural network like migration scheme and its application to real world problems, Integrated Computer-Aided Engineering (2001) to appear.

    Google Scholar 

  18. J. Huhse, A. Zell, Evolutionary strategy with neighborhood attraction, in: H. Bothe, R. Rojas (Eds.), Neural Computation 2000, ICSC Academic Press, Zürich, 2000, pp. 363–369.

    Google Scholar 

  19. J. Huhse, A. Zell, Investigating the influence of the neighborhood attraction factor to the evolution strategies with neighborhood attraction, in: M. Verleysen (Ed.), Proc. Of European Symposium on Artificial Neural Networks (ESANN’2001), D facto publications, Brussells, Belgium, 2001, pp. 179–184.

    Google Scholar 

  20. H.-P. Schwefel, Numerical Optimization of Computer Models, Wiley and Sons, 1981.

    Google Scholar 

  21. K. Hering, R. Haupt, T. Villmann, Hierarchical Strategy of Model Partitioning for VLSI-Design Using an Improved Mixture of Experts Approach, in: Proc. Of the Conference on Parallel and Distributed Simulation (PADS’96), IEEE Computer Society Press, Los Alamitos, 1996, pp. 106–113.

    Google Scholar 

  22. L. Sachs, Angewandte Statistik, 7th Edition, Springer Verlag, 1992.

    Google Scholar 

  23. A. Körner, Kategorisierung von Beziehungsschemata mit der Methode “Das Zentrale Beziehungskonfliktthema”, Ph.D. thesis, University Leipzig, Germany, (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villmann, T., Albani, C. (2001). Clustering of Categoric Data in Medicine — Application of Evolutionary Algorithms. In: Reusch, B. (eds) Computational Intelligence. Theory and Applications. Fuzzy Days 2001. Lecture Notes in Computer Science, vol 2206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45493-4_62

Download citation

  • DOI: https://doi.org/10.1007/3-540-45493-4_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42732-2

  • Online ISBN: 978-3-540-45493-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics