[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Integration of Recursive \( \mathcal{A}\mathcal{L}\mathcal{N} \)-Theories

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1822))

  • 575 Accesses

Abstract

In this paper we focus on the problem of integrating knowledge bases expressed in a description logic. To this end, we propose three basic operations: union, intersection and renaming. First, the semantics of these compositional operations is studied abstracting away from implementation details. Then, we present an implementation of the proposed operations, for knowledge bases expressed in the language \( \mathcal{A}\mathcal{L}\mathcal{N} \) extended with recursive definitions of concepts, which transforms compositions of knowledge bases into knowledge bases. This transformation is sound and complete with respect to the semantics referred before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Baader. Terminological cycles in KL-ONE-based knowledge representation languages. Research Report RR-90-01, DFKI, Postfach 2080, D-6750 Kaiserslautern, Germany, 1990.

    Google Scholar 

  2. F. Baader, A. Borgida, and D. L. MacGuiness. Matching in description logics: Preliminary results. In M.-L. Mugnier and M. Chein, editors, Proc. of the 6th International Conference on Conceptual Structures (ICCS’98), volume 1453 of Lecture Notes in Computer Science, pages 15–34. Springer-Verlag, 1998.

    Google Scholar 

  3. F. Baader and R. Küsters. Computing the least commom subsumer and the most specific concept in the presence of cyclic \( \mathcal{A}\mathcal{L}\mathcal{N} \)-concept descriptions. LTCS-Report 98-06, Aachen University of Technology, Research Group for Theoretical Computer Science, Ahornstr. 55, D-52074 Aachen, Germany, 1998.

    Google Scholar 

  4. F. Baader and P. Narendran. Unification of concept terms in description logics. In H. Prade, editor, Proc. of the 13th European Conference on Artificial Intelligence (ECAI-98), pages 331–335. John Wiley & Sons Ltd, 1998.

    Google Scholar 

  5. A. Brogi, S. Contiero, and F. Turini. Composing general logic programs. In J. Dix, U. Furbach, and A. Nerode, editors, Proc. of the 4th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’97), volume 1265 of Lecture Notes in Artificial Intelligence, pages 273–288. Springer-Verlag, 1997.

    Google Scholar 

  6. A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Modular logic programming. ACM Transactions on Programming Languages and Systems, 16(4):1361–1398, 1994.

    Article  Google Scholar 

  7. A. Brogi, C. Renso, and F. Turini. Dynamic composition of parameterised logic programs. In P. Hill and A. Brogi, editors, Proc. of the Post Conference Workshop on Logic-Based Composition of Software for the ICLP’97 (LOCOS’97), 1997.

    Google Scholar 

  8. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description logic framework for information integration. In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors, Proc. of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98), pages 2–13. Morgan Kaufmann, 1998.

    Google Scholar 

  9. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept languages. Information and Computation, 134(1):1–58, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Küsters. Characterizing the semantics of terminological cycles in \( \mathcal{A}\mathcal{L}\mathcal{N} \) using finite automata. In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors, Proc. of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98), pages 499–510. Morgan Kaufmann, 1998.

    Google Scholar 

  11. B. Nebel. Reasoning and Revision in Hybrid Representation Systems, volume 422 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1990.

    Google Scholar 

  12. A. Vitória and M. Mamede. Composition of cyclic \( \mathcal{A}\mathcal{L}\mathcal{N} \)-knowledge bases. Technical Report UNL-DI-03-99, Departamento de Informática, Universidade Nova de Lisboa, Quinta da Torre, 2825-114 Caparica, Portugal, 1999.

    Google Scholar 

  13. A. Vitória and M. Mamede. A framework for integrating \( \mathcal{A}\mathcal{L}\mathcal{N} \)-theories with recursive definitions. In A. Brogi and P. Hill, editors, Proc. of the 2nd International Workshop on Component-based Software Development in Computational Logic (COCL’99), 1999.

    Google Scholar 

  14. A. Vitória and M. Mamede. Integrating concept-based knowledge bases. Technical Report UNL-DI-02-99, Departamento de Informática, Universidade Nova de Lisboa, Quinta da Torre, 2825-114 Caparica, Portugal, 1999.

    Google Scholar 

  15. A. Vitória and M. Mamede. Integrating concept-based knowledge bases. In P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P. Patel-Schneider, editors, Proc. of the 1999 International Workshop on Description Logics (DL’99), pages 66–70. Linköpings Universitet, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vitória, A., Mamede, M. (2000). On the Integration of Recursive \( \mathcal{A}\mathcal{L}\mathcal{N} \)-Theories. In: Hamilton, H.J. (eds) Advances in Artificial Intelligence. Canadian AI 2000. Lecture Notes in Computer Science(), vol 1822. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45486-1_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-45486-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67557-0

  • Online ISBN: 978-3-540-45486-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics