Abstract
Adjustable Autonomy (AA) is the name given to a variety of approaches to the task of giving outside entities the ability to change the level of autonomy of agents in an autonomous system. The idea presented in this paper is to leverage the flexibility and robustness of agent teams to develop flexible and safe AA mechanisms.We argue that the fundamental properties of teamwork are very useful for providing the robustness to change and flexibility that an implementation of AA requires.We present the EASE system which leverages teamwork as the basis for a powerful and robust AA system for intelligent actors in interactive simulation environments.
Preview
Unable to display preview. Download preview PDF.
Reference
Bruce Blumberg and Tinsley Galyean. Multi-level control of autonomous animated creatures for real-time virtual environments. In Siggraph’ 95 Proceedings, pages 295–304, New York, 1995. ACM Press.
James Cremer, Joseph Kearney, and Yiannis Papelis. HCSM: A framework for behavior and scenario control in virtual environments. ACM Transactions on Modeling and Computer Simulation, pages 242–267, 1995.
G. Dorais, R. Bonasso, D. Kortenkamp, B. Pell, and D. Schreckenghost. Adjustable autonomy for human-centered autonomous systems on mars. In Proceedings of the first international conference of the Mars society, pages 397–420, August 1998.
R. Falcone and C. Castelfranchi. Levels of delegation and levels of help for agents with adjustable autonomy. In Proceedings of AAAI Spring symposium on agents with adjustable autonomy, pages 25–32, 1999.
D. Goldberg and M. Mataric. Robust behavior-based control for distributed multi-robot collection tasks. Technical Report IRIS-00-387, Institute for Robotics and Intelligent Systems, University of Southern California, 2000.
Henry Hexmoor, editor. Workshop on Autonomy Control Software. Autonomous Agents 1999, May 1999.
D. Kortenkamp, G. Dorias, and K. Myers, editors. Proceedings of IJCAI99 Workshop on Adjustable Autonomy Systems, August 1999.
David Kortenkamp, Robert Burridge, Peter Bonasso, Debra Schrenkenghoist, and Mary Beth Hudson. An intelligent software architecture for semi-autonomous robot control. In Autonomy Control Software Workshop, Autonomous Agents 99, pages 36–43, 1999.
D. Kortenkamp, D. Keirn-Schreckenghost, and R.P. Bonasso. Adjustable control autonomy for manned space flight. In IEEE Aerospace Conference, 2000.
Maja Mataric. Interaction and Intelligent Behavior. PhD thesis, Massachusetts Institute of Technology, 1994.
Marvin Minsky. The Society of Mind. Simon and Schuster, 1988.
D. Musliner and K. Krebsbach. Adjustable autonomy in procedural control for refineries. In AAAISpring Symposium on Agents with Adjustable Autonomy, pages 81–87, Stanford, California, 1999.
Itsuki Noda. Soccer server: A simulator of RoboCup. In Proceedings of AISymp osium’95, Japanese Society for Artificial Intelligence, December 1995.
S. Ossowski and A. García-Serrano. Intelligent Agents V: Agent Theories Architectures and Languages, chapter Social Structure in Artificial Agent Societies: Implications for Autonomous Problem Solving Agents, pages 133–148. Springer, 1999.
Lynne E. Parker. Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Transactions on Robotics and Automation, 14(2):220–240, 1998.
Ken Perlin and Athomas Goldberg. Improv: A system for scripting interactive actors in virtual worlds. Computer Graphics, 29(3), 1996.
Paolo Pirjanian and Maja Mataric. A decision theoretic approach to fuzzy behavior coordination. In Proceedings, IEEE International Symposium on Computational Intelligence in Robotics & Automation (CIRA-99), Monteray, CA, Nov0. 1999.
N. Reed, editor. Proceedings of PRICAI Workshop on Teams with Adjustable Autonomy, Melbourne, Australia, 2000.
Saab. TACSI-User Guide. Gripen, Operational Analysis, Modeling and Simulation, 5.2 edition, September 1998. in Swedish.
P. Scerri and N. Reed. Real-time control of intelligent agents. In Technical Abstracts of Technical Demonstrations at Agents 2000, 2000.
Paul Scerri and Nancy Reed. Creating complex actors with EASE. In Proceedings of Autonomous Agents 2000, pages 142–143, 2000.
Paul Scerri, Nancy Reed, Tobias Wiren, Kikael Lönneberg, and Pelle Nilsson. Headless Chickens IV. In Peter Stone, Tucker Balch, and Gerhard Kraetszchmar, editors, RoboCup-2000: Robot Soccer World Cup IV, pages 493–496. Springer Verlag, Berlin, 2001.
L. Schooley, B. Zeigler, F. Cellier, and F. Wang. High-autonomy control of space resource processing plants. IEEE Control Systems Magazine, 13(3):29–39, 1993.
Miland Tambe. Teamwork in real-world, dynamic environments. In Proceedings of the Second International Conference on Multi-agent Systems, Kyoto, Japan, 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Scerri, P., Reed, N.E. (2001). Making Adjustable Autonomy Easier with Teamwork. In: Kowalczyk, R., Loke, S.W., Reed, N.E., Williams, G.J. (eds) Advances in Artificial Intelligence. PRICAI 2000 Workshop Reader. PRICAI 2000. Lecture Notes in Computer Science(), vol 2112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45408-X_35
Download citation
DOI: https://doi.org/10.1007/3-540-45408-X_35
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42597-7
Online ISBN: 978-3-540-45408-3
eBook Packages: Springer Book Archive