[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Constructive Threshold Logic Addition

A Synopsis of the Last Decade

  • Conference paper
  • First Online:
Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003 (ICANN 2003, ICONIP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2714))

  • 1354 Accesses

Abstract

This paper presents a comprehensive review of the constructive results obtained over the last twelve years for the addition of two binary numbers using threshold logic gates. Such solutions are intended for very practical VLSI implementations. A comparison of nine different solutions is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Alon, J. Bruck: Explicit construction of depth-2 majority circuits for comparison and addition. Res. Rep. RJ 8300 (75661), IBM Almaden Res. Center (1991) [Also in: Proc. ISIT’93, 433 (1993); SIAM J. Disc. Math., 7(1), 1–8 (1994); US Patent 5357528 (10/18/1994)]

    Google Scholar 

  2. V. Beiu: Neural Networks Using Threshold Gates: A Complexity Analysis of Their Areaand Time-Efficient VLSI Implementations, PhD dissertation, Katholieke Univ. Leuven, Belgium (1994)

    Google Scholar 

  3. V. Beiu: Digital integrated circuit implementations, Chapter E1.4 in R. Beale (eds.): Handbook of Neural Computation. New York: Inst. of Physics [20] (1996)

    Google Scholar 

  4. V. Beiu: On the circuit and VLSI complexity of threshold gate COMPARISON. Neurocomputing, 19(1–3), 77–98 (1998)

    Article  Google Scholar 

  5. V. Beiu: Neural addition and Fibonacci numbers. Proc. IWANN’99, LNCS 1607, Vol. 2, 198–207 (1999)

    Google Scholar 

  6. V. Beiu: Adder and multiplier circuits employing logic gates having discrete, weighted inputs and methods of performing combinatorial operations therewith. US Patent 6205458 (03/20/2001)

    Google Scholar 

  7. V. Beiu: Adder having reduced number of internal layers and method of operation thereof. US Patent 6438572 (08/20/2002)

    Google Scholar 

  8. V. Beiu, J.G. Taylor: On the circuit complexity of sigmoid feedforward neural networks. Neural Networks, 9(7), 1155–1171 (1996)

    Article  Google Scholar 

  9. V. Beiu, J.A. Peperstraete, J. Vandewalle, R. Lauwereins: Comparison and threshold gate decomposition. Proc. MicroNeuro’93, 83–90 (1993)

    Google Scholar 

  10. V. Beiu, J.A. Peperstraete, J. Vandewalle, R. Lauwereins: Area-time performances of some neural computation. Proc. SPRANN’94, 664–668 (1994)

    Google Scholar 

  11. V. Beiu, J.A. Peperstraete, J. Vandewalle, R. Lauwereins: Addition using constrained threshold gates. Proc. ConTI’94, 166–177 (1994)

    Google Scholar 

  12. V. Beiu, J.M. Quintana, M.J. Avedillo: VLSI implementation of threshold logic: A comprehensive survey. IEEE Trans. Neural Networks (Special Issue on Hardware Implementations), 14(5), in press (2003)

    Google Scholar 

  13. R. Betts: Majority logic binary adder. US Patent 3440413 (04/22/1969)

    Google Scholar 

  14. R.P. Brent, H.T. Kung: A regular layout for parallel adders. IEEE Trans. Comput., 31(3), 260–264 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Bruck, J.W. Goodmann: On the power of neural networks for solving hard problems. J. Complexity, 6(2), 129–135 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. S.A. Cannas: Arithmetic perceptrons. Neural Computation, 7(1), 173–181 (1995)

    Article  Google Scholar 

  17. P.K. Chang, M.D.F Schlag, C.D. Thomborson, V.G. Oklobdzija: Delay optimization of carry-skip adders and block carry-lookahead adders using multidimensional programming. IEEE Trans. Comput., 41(8), 920–930 (1992)

    Article  Google Scholar 

  18. S. Cotofana, S. Vassiliadis: Low weight and fan-in neural networks for basic arithmetic operations. Proc. IMACS’97, Vol. 4, 227–232 (1997)

    Google Scholar 

  19. R.W. Doran: Variants of an improved carry look-ahead adder. IEEE Trans. Comput., 37(9), 1110–1113 (1988)

    Article  MathSciNet  Google Scholar 

  20. E. Fiesler, R. Beale (eds.): Handbook of Neural Computation. New York: Inst. of Physics (1996)

    MATH  Google Scholar 

  21. K.F. Goser, C. Pacha, A. Kanstein, and M.L. Rossmann: Aspects of system and circuits for nanoelectronics. Proc. IEEE, 85(4), 558–573 (1997)

    Article  Google Scholar 

  22. D. Hammerstrom: The connectivity analysis of simple associations —or— How many connections do you need. In D.Z. Anderson (ed.): Neural Inform. Proc. Sys., New York: Inst. of Physics, 338–347 (1988)

    Google Scholar 

  23. T. Han, D.A. Carlson, S.P Levitan: VLSI design of high-speed, low-area addition circuitry. Proc. ICCD’87, 418–422 (1987)

    Google Scholar 

  24. J. Håstad: On the size of weights for threshold gates. SIAM J. Discr. Math., 7(3), 484–492 (1994)

    Article  MATH  Google Scholar 

  25. H. Jeong: Neural network implementation of a binary adder. US Patent 5016211 (05/14/1991)

    Google Scholar 

  26. M.G. Johnson: A symmetric CMOS NOR gate for high-speed applications. IEEE J. Solid-State Circuits, 23(10), 1233–1236 (1988)

    Article  Google Scholar 

  27. T.P. Kelliher, R.M. Owens, M.J. Irwin, T.-T. Hwang: ELM a fast addition algorithm discovered by a program. IEEE Trans. Comput., 41(9), 1181–1184 (1992)

    Article  Google Scholar 

  28. V.M. Khrapchenko: Asymptotic estimation of addition time of a parallel adder. Problemy Kibernetiki, 19, 107–125 (1967). English transl., Syst. Th. Res., 19, 105–122 (1970)

    Google Scholar 

  29. P.M. Kogge, H.S. Stone: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Comput., 22(8), 783–791 (1973)

    Article  MathSciNet  Google Scholar 

  30. R.E. Ladner, M.J. Fischer: Parallel prefix computations. J. ACM, 27(4), 831–838 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  31. J.B. Lerch: Threshold gate circuits employing field-effect transistors. US Patent 3715603 (02/06/1973)

    Google Scholar 

  32. L.A. Lev et al.: A 64-b microprocessor with multimedia support. IEEE J. Solid-State Circuits, 30(11), 1227–1238 (1995)

    Article  MathSciNet  Google Scholar 

  33. L.A. Lev: Fast static cascode logic gate. US Patent 5438283 (08/01/1995)

    Google Scholar 

  34. H. Ling: High speed binary adder. IBM J. Res. Develop., 25(2-3), 156–166 (1981)

    Article  Google Scholar 

  35. O.B. Lupanov: On circuits of threshold elements. Dokl. Akad. Nauk SSSR, 202, 1288–1291 (1971). English transl., Sov. Phys. Dokl., 17(2), 91–93 (1972)

    MathSciNet  Google Scholar 

  36. T. Lynch, E.E. Swartzlander Jr.: A spanning tree carry lookahead adder. IEEE Trans. Comput. 41(8), 931–939 (1992)

    Article  Google Scholar 

  37. R.C. Minnik: Linear-input logic, IRE Trans. Electron. Comput., 10(1), 6–16 (1961)

    Article  Google Scholar 

  38. R.K. Montoye: Area-time efficient addition in charge based technology. Proc. DAC’ 81, 862–872 (1981)

    Google Scholar 

  39. S. Muroga: Threshold Logic and Its Applications. New York: Wiley (1971)

    MATH  Google Scholar 

  40. S.D. Naffziger, G. Colon-Bonet, T. Fischer, R. Reidlinger, T.J. Sullivan, T. Grutkowski: The implementation of the Itanium 2 microprocessor. IEEE J. Solid-State Circuits, 37(11), 1448–1460 (2002)

    Article  Google Scholar 

  41. E.I. Nechiporuk: The synthesis of networks from threshold elements. Problemy Kibernetiki, 11(1), 49–62 (1964). English transl., Automation Express, 7(1), 27–32 and 35–39 (1964)

    Google Scholar 

  42. T.F. Ngai, M.J. Irwin: Regular area-efficient carry-lookahead adders. Proc. ARITH 7, 9–15 (1985)

    Google Scholar 

  43. S. Ong, D.E. Atkins: A comparison of ALU structures for VLSI technology. Proc. ARITH 6, 10–16 (1983)

    Google Scholar 

  44. C. Pacha, U. Auer, C. Burwick, P. Glösekötter, A. Brennemann, W. Prost, F.-J. Tegude, K.F. Goser: Threshold logic circuit design for parallel adders using resonant tunneling devices. IEEE Trans. VLSI Syst., 8(10), 558–572 (2000)

    Article  Google Scholar 

  45. I. Parberry: Circuit Complexity and Neural Networks. Cambridge, MA: MIT Press (1994)

    MATH  Google Scholar 

  46. N.T. Quach, M.J. Flynn: High-speed addition in CMOS. IEEE Trans. Comput., 41(12), 1612–1615 (1992)

    Article  Google Scholar 

  47. J.F. Ramos, A.G. Bohórquez: Two operand binary adders with threshold logic. IEEE Trans. Comput., 48(12), 1324–1337 (1999)

    Article  MathSciNet  Google Scholar 

  48. N.P. Red’kin: Synthesis of threshold circuits for certain classes of Boolean functions, Kibernetika, 5(1), 6–9 (1970). English transl., Cybernetics, 6(1), 540–544 (1973)

    MathSciNet  Google Scholar 

  49. T. Rhyne: Limitations on carry lookahead networks. IEEE Trans. Comput., 33(4), 373–374 (1984)

    Article  Google Scholar 

  50. V.P. Roychowdhury, A. Orlitsky, K.-Y. Siu: Lower bounds on threshold and related circuits via communication complexity. IEEE Trans. Info. Th., 40(2), 467–474 (1994)

    Article  MATH  Google Scholar 

  51. K.-Y. Siu, J. Bruck: Neural computations of arithmetic functions. Proc. IEEE, 78(10), 1669–1675 (1990)

    Article  Google Scholar 

  52. K.-Y. Siu, J. Bruck: On the power of threshold circuits with small weights. SIAM J. Discr. Math., 4(3), 423–435 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  53. K.-Y. Siu, J. Bruck: Neural computing with small weights. In J.E. Moody, S.J. Hanson, R.P. Lippmann (eds.): Advs. Neural Inform. Proc. Sys. 4, San Mateo: Morgan Kaufmann, 944–949 (1992)

    Google Scholar 

  54. K.-Y. Siu, V. Roychowdhury, T. Kailath: Computing with almost optimal size threshold circuits. Tech. Rep., Info. Sys. Lab., Stanford University (1990) [Also in: Proc. ISIT’91, 370 (1991); in S.J. Hanson, J.D. Cowan and C.L. Giles (eds.): Advs. Neural Inform. Proc. Sys. 5, San Mateo: Morgan Kaufmann, 19–26 (1993)]

    Google Scholar 

  55. K.-Y. Siu, V.P. Roychowdhury, T. Kailath: Depth-size tradeoffs for neural computations. IEEE Trans. Comput., 40(12), 1402–1412 (1991)

    Article  MathSciNet  Google Scholar 

  56. S. Vassiliadis, S. Cotofana, K. Berteles: 2-1 addition and related arithmetic operations with threshold logic. IEEE Trans. Comput., 45(9), 1062–1067 (1996)

    Article  MATH  Google Scholar 

  57. I. Wegener: The Complexity of Boolean Functions. Stuttgart: Wiley-Teubner (1987)

    Google Scholar 

  58. B.W.Y. Wei, C.D. Thompson: Area-time optimal adder design. IEEE Trans. Comput., 39(5), 666–675 (1990)

    Article  Google Scholar 

  59. C.-H. Yeh, E.A. Varvarigos, B. Parhami, H. Lee: Optimal-depth threshold circuits for multiplication and related problems. Proc. Asilomar’99, Vol. 2, 1331–1335 (1999)

    Google Scholar 

  60. C.-H. Yeh, E.A. Varvarigos, B. Parhami: Optimal-depth circuits for prefix computation and addition. Proc. Asilomar’2000, Vol. 2, 1349–1353 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beiu, V. (2003). Constructive Threshold Logic Addition. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds) Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003. ICANN ICONIP 2003 2003. Lecture Notes in Computer Science, vol 2714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44989-2_89

Download citation

  • DOI: https://doi.org/10.1007/3-540-44989-2_89

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40408-8

  • Online ISBN: 978-3-540-44989-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics