[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Boolean Constraints for Binding-Time Analysis

  • Conference paper
  • First Online:
Programs as Data Objects (PADO 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2053))

Included in the following conference series:

  • 234 Accesses

Abstract

To achieve acceptable accuracy, many program analyses for functional programs are “property polymorphic”. That is, they can infer different input-output relations for a function at separate applications of the function, in a manner similar to type inference for a polymorphic language. We extend a property polymorphic (or “polyvariant”) method for binding-time analysis, due to Dussart, Henglein, and Mossin, so that it applies to languages with ML-style type polymorphism. The extension is non-trivial and we have implemented it for Haskell. While we follow others in specifying the analysis as a non-standard type inference, we argue that it should be realised through a translation into the well-understood domain of Boolean constraints. The expressiveness offered by Boolean constraints opens the way for smooth extensions to sophisticated language features and it allows for more accurate analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency. In Proc. 26th ACM Symp. Principles of Programming Languages, pages 147–160. ACM Press, 1999.

    Google Scholar 

  2. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes of Boolean functions for dependency analysis. Science of Computer Programming, 31(1):3–45, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In Proc. 27th ACM/IEEE Design Automation Conf., pages 40–45. IEEE Computer Society Press, 1990.

    Google Scholar 

  4. L. Damas and R. Milner. Principal type-schemes for functional programs. In Proc. Ninth ACM Symp. Principles of Programming Languages, pages 207–212. ACM Press, 1982.

    Google Scholar 

  5. F. Damiani. Non-Standard Type Inference for Functional Programs. PhD thesis, Universitá di Torino, February 1998.

    Google Scholar 

  6. W. Dowling and J. Gallier. Linear-time algorithms for testing the satisfiability of propositional Horn formulae. Journal of Logic Programming, 1(3):267–284, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Dussart, F. Henglein, and C. Mossin. Polymorphic recursion and subtype qualifications: Polymorphic binding-time analysis in polynomial time. In A. Mycroft, editor, Proc. Second Int. Symp. Static Analysis, volume 983 of LNCS, pages 118–135. Springer-Verlag, 1995.

    Google Scholar 

  8. M. Fähndrich and J. Rehof. Type-based flow analysis: From polymorphic subtyping to CFL reachability. In Proc. Twenty-Eighth ACM Symp. Principles of Programming Languages. ACM Press, 2001.

    Google Scholar 

  9. J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers. In Proc. 1999 ACM SIGPLAN Conf. Programming Language Design and Implementation, (SIGPLAN Notices 34(5)), pages 192–203. ACM Press, 1999.

    Google Scholar 

  10. K. Glynn, P. J. Stuckey, M. Sulzmann, and H. Søndergaard. Boolean constraints for binding-time analysis. Technical Report TR2000/14, Dept. of Computer Science and Software Engineering, The University of Melbourne, 2000.

    Google Scholar 

  11. J. Gustavsson and J. Svenningsson. Constraint abstractions. Proc. Second Symp. Programs as Data Objects (PADO II), Aarhus, Denmark, May 2001.

    Google Scholar 

  12. N. Heintze and J. Riecke. The SLam calculus: Programming with secrecy and integrity. In Proc. 25th ACM Symp. Principles of Programming Languages, pages 365–377. ACM Press, 1998.

    Google Scholar 

  13. F. Henglein. Type inference with polymorphic recursion. ACM Transactions on Programming Languages and Systems, 15(2):253–289, 1993.

    Article  Google Scholar 

  14. F. Henglein and C. Mossin. Polymorphic binding-time analysis. In D. Sannella, editor, Proc. European Symp. Programming (ESOP 94), volume 788 of LNCS, pages 287–301. Springer-Verlag, 1994.

    Google Scholar 

  15. N. Kobayashi. Type-based useless variable elimination. In Proc. 2000 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation (SIGPLAN Notices 34(11)), pages 84–93. ACM Press, 2000.

    Google Scholar 

  16. T. Mogensen. Binding time analysis for polymorphically typed higher order languages. In J. Diaz and F. Orejas, editors, Proc. Int. Conf. Theory and Practice of Software Development, volume 352 of LNCS, pages 298–312. Springer-Verlag, 1989.

    Google Scholar 

  17. S. L. Peyton Jones and A. Santos. A transformation-based optimiser for Haskell. Science of Computer Programming, 32(1-3):3–47, 1998.

    Article  MATH  Google Scholar 

  18. F. Pottier and S. Conchon. Information flow inference for free. In Proc. 5th Int. Conf. Functional Programming (ICFP’00), pages 46–57. ACM Press, 2000.

    Google Scholar 

  19. F. Prost. A static calculus of dependencies for the λ-cube. In Proc. 15th IEEE Ann. Symp. Logic in Computer Science (LICS’ 2000), pages 267–278. IEEE Computer Society Press, 2000.

    Google Scholar 

  20. A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential programs. In S. Swierstra, editor, Proc. European Symp. Programming (ESOP 99), volume 1576 of LNCS, pages 40–58. Springer, 1999.

    Google Scholar 

  21. V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent constraint programming. In Proc. Eighteenth ACM Symp. Principles of Programming Languages, pages 333–352. ACM Press, 1991.

    Google Scholar 

  22. P. Schachte. Efficient ROBDD operations for program analysis. Australian Computer Science Communications, 18(1):347–356, 1996.

    Google Scholar 

  23. Z. Shao. An overview of the FLINT/ML compiler. In Proc. 1997 ACM SIGPLAN Workshop on Types in Compilation (TIC’97), Amsterdam, The Netherlands, June 1997.

    Google Scholar 

  24. D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed optimizing compiler for ML. In Proc. ACM SIGPLAN’ 96 Conf. Programming Language Design and Implementation (SIGPLAN Notices 31(5)), pages 181–192. ACM Press, 1996.

    Google Scholar 

  25. D. Volpano and G. Smith. A type-based approach to program security. In M. Bidoit and M. Dauchet, editors, Theory and Practice of Software Development (TAPSOFT’ 97), volume 1214 of LNCS, pages 607–621. Springer, 1997.

    Chapter  Google Scholar 

  26. M. Wand and L. Siveroni. Constraint systems for useless variable elimination. In Proc. 26th ACM Symp. Principles of Programming Languages, pages 291–302. ACM Press, 1999.

    Google Scholar 

  27. K. Wansbrough and S. L. Peyton Jones. Once upon a polymorphic type. In Proc. 26th ACM Symp. Principles of Programming Languages, pages 15–28. ACM Press, 1999.

    Google Scholar 

  28. K. Wansbrough and S. L. Peyton Jones. Simple usage polymorphism. In Third ACM SIGPLAN Workshop on Types in Compilation (TIC 2000), 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glynn, K., Stuckey, P.J., Sulzmann, M., Søndergaard, H. (2001). Boolean Constraints for Binding-Time Analysis. In: Danvy, O., Filinski, A. (eds) Programs as Data Objects. PADO 2001. Lecture Notes in Computer Science, vol 2053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44978-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-44978-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42068-2

  • Online ISBN: 978-3-540-44978-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics