Abstract
Magnetic resonance perfusion imaging has become a technique of choice in the evaluation of patients with suspected coronary artery disease (CAD). In order to improve the quantification of perfusion parameters (such as signal intensity amplitude and upslope), an automatic registration technique is proposed. The results are compared to manually registered perfusion sequences. Perfusion maps computed from original and registered data sets are also compared. Automatic registration can be efficiently used as a post-processing technique to improve further qualitative and quantitative evaluation strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schwitter J., Nanz D., Kneifel S., Bertschinger K., Buchi M., Knusel P. R., Marincek B., Luscher T. F., von Schulthess G. K.: Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103(18) 2001 2230–2235
Bertschinger KM., Nanz D., Buechi M., Luescher TF., Marincek B., von Schulthess GK., Schwitter J.: Magnetic resonance myocardial first-pass perfusion imaging: parameter optimization for signal response and cardiac coverage. Magn Reson Imaging 14(5) 2001
Al-Saadi N., Nagel E., Gross M., Bornstedt A., Schnackenburg B., Klein C., Klimek W., Oswald H., Fleck E.: Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101(12) 2000 1379–1383
Plein S., Ridgway J. P., Jones T. R., Bloomer T. N., Sivananthan MU.: Coronary artery disease: assessment with a comprehensive MR imaging protocol—initial results. Radiology 225(1) 2002 300–307
ITK, National Library of Medicine Insight Segmentation and Registration Toolkit http://www.itk.org
Wells W. M. 3rd, Viola P., Atsumi H., Nakajima S., Kikinis R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1) 1996 35–51.
Viola P.: Alignment by Maximization of Mutual Information. PhD thesis, Massachusetts Institute of Technology 1995
Viola P. and Wells III W.: Alignment by Maximization of Mutual Information. International Journal of Computer Vision 24(2) 1997 137–154
Bidaut L. M., Vallee J. P.: Automated registration of dynamic MR images for the quantification of myocardial perfusion. J. Magn. Reson. Imaging 13(4) 2001 648–655
Delzescaux T., Frouin F., De Cesare A., Philipp-Foliguet S., Zeboudj R., Janier M., Todd-Pokropek A., and Herment A.: Adaptive and self-evaluating registration method for myocardial perfusion assessment. Magma 13 2001 28–39
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bracoud, L., Vincent, F., Pachai, C., Canet, E., Croisille, P., Revel, D. (2003). Automatic Registration of MR First-Pass Myocardial Perfusion Images. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2003. Lecture Notes in Computer Science, vol 2674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44883-7_22
Download citation
DOI: https://doi.org/10.1007/3-540-44883-7_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40262-6
Online ISBN: 978-3-540-44883-9
eBook Packages: Springer Book Archive