[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Registration of MR First-Pass Myocardial Perfusion Images

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2674))

Included in the following conference series:

Abstract

Magnetic resonance perfusion imaging has become a technique of choice in the evaluation of patients with suspected coronary artery disease (CAD). In order to improve the quantification of perfusion parameters (such as signal intensity amplitude and upslope), an automatic registration technique is proposed. The results are compared to manually registered perfusion sequences. Perfusion maps computed from original and registered data sets are also compared. Automatic registration can be efficiently used as a post-processing technique to improve further qualitative and quantitative evaluation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schwitter J., Nanz D., Kneifel S., Bertschinger K., Buchi M., Knusel P. R., Marincek B., Luscher T. F., von Schulthess G. K.: Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103(18) 2001 2230–2235

    Google Scholar 

  2. Bertschinger KM., Nanz D., Buechi M., Luescher TF., Marincek B., von Schulthess GK., Schwitter J.: Magnetic resonance myocardial first-pass perfusion imaging: parameter optimization for signal response and cardiac coverage. Magn Reson Imaging 14(5) 2001

    Google Scholar 

  3. Al-Saadi N., Nagel E., Gross M., Bornstedt A., Schnackenburg B., Klein C., Klimek W., Oswald H., Fleck E.: Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101(12) 2000 1379–1383

    Google Scholar 

  4. Plein S., Ridgway J. P., Jones T. R., Bloomer T. N., Sivananthan MU.: Coronary artery disease: assessment with a comprehensive MR imaging protocol—initial results. Radiology 225(1) 2002 300–307

    Article  Google Scholar 

  5. ITK, National Library of Medicine Insight Segmentation and Registration Toolkit http://www.itk.org

  6. Wells W. M. 3rd, Viola P., Atsumi H., Nakajima S., Kikinis R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1) 1996 35–51.

    Article  Google Scholar 

  7. Viola P.: Alignment by Maximization of Mutual Information. PhD thesis, Massachusetts Institute of Technology 1995

    Google Scholar 

  8. Viola P. and Wells III W.: Alignment by Maximization of Mutual Information. International Journal of Computer Vision 24(2) 1997 137–154

    Article  Google Scholar 

  9. Bidaut L. M., Vallee J. P.: Automated registration of dynamic MR images for the quantification of myocardial perfusion. J. Magn. Reson. Imaging 13(4) 2001 648–655

    Article  Google Scholar 

  10. Delzescaux T., Frouin F., De Cesare A., Philipp-Foliguet S., Zeboudj R., Janier M., Todd-Pokropek A., and Herment A.: Adaptive and self-evaluating registration method for myocardial perfusion assessment. Magma 13 2001 28–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bracoud, L., Vincent, F., Pachai, C., Canet, E., Croisille, P., Revel, D. (2003). Automatic Registration of MR First-Pass Myocardial Perfusion Images. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2003. Lecture Notes in Computer Science, vol 2674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44883-7_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44883-7_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40262-6

  • Online ISBN: 978-3-540-44883-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics