Abstract
In this paper we consider one of the big challenges when constructing modular behavior architectures for the control of real systems, that is, how to decide which module or combination of modules takes control of the actuators in order to implement the behavior the robot must perform when confronted with a perceptual situation. The problem is addressed from the perspective of combinations of ANNs, each implementing a behavior, that interact through the modulation of their outputs. This approach is demonstrated using a three way predator-prey-food problem where the behavior of the individual should change depending on its energetic situation. The behavior architecture is incrementally evolved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arbib, M.A. (1992), “Schema Theory”, in The Encyclopedia of Artificial Intelligence, 2nd ed., S. Shapiro (Ed.), Wiley, New York, N.Y., pp. 1427–43.
Arkin, R.C. (1998), Behavior Based Robotics, MIT Press, Cambridge, MA.
Becerra, J.A., Santos, J., and Duro, R.J. (1999), “Progressive Construction of Compound Behavior Controllers for Autonomous Robots Using Temporal Information”, Advances in Artificial Life, Dario Floreano, Jean-Daniel Nicoud, Francesco Mondada (Eds.), LNCS, 1674, Springer-Verlag, Berlin, pp. 324–328.
Brooks, R.A. (1986), Achieving Artificial Intelligence through Building Robots, A.I. Memo 898, MIT, AI Lab.
Colombetti, M., Dorigo, M., and Borghi, G. (1996), “Behavior Analysis and Training-A Methodology for Behavior Engineering”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 26, No. 3, pp. 365–380.
Duro, R.J., Santos, J., and Gomez, A. (1995), “Synaptic Modulation Based Artificial Neural Networks”, From Natural to Artificial Neural Computation, J. Mira, F. Sandoval (Eds.), LNCS, Vol. 930, Springer-Verlag, Berlin, pp. 31–36.
Husbands, P., Smith, T., O’shea, M., Jakobi, N., Anderson, J., Philippides, A. (1998), “Brains, Gases and Robots”, Perspectives Neural Comp., V. 2, pp. 51–63.
Ishiguro, A., Otsu, K., Fujii, A., and Uchikawa, Y. (2000), “Evolving an Adaptive Controller for a Legged-Robot with Dynamically-Rearranging Neural Networks”, Proc. Supp. 6th Int. Conf. on Simulation of Adaptive Behavior, J-A Meyer, A. Berthoz, D. Floreano, H.L. Roitblat, S.W. Wilson (Eds.), pp. 235–244.
Marín, J. and Solé, R.V. (1999), “Macroevolutionary Algorithms: A New Optimization Method on Fitness Landscapes”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 4, pp. 272–286.
Meyer, J-A., Doncieux, S., Filliat, D., and Guillot, A., (2002), “Evolutionary Approaches to Neural Control of Rolling, Walking, Swimming and Flying Animats or Robots”, R.J. Duro, J. Santos and M. Grafia (Eds.), Biologically Inspired Robot Behavior Engineering, Vol. 109, Physica-Verlag, pp. 1–43.
Harvey, I. (1996), “Artificial Evolution and Real Robots”, Proceedings of International Symposium on Artificial Life and Robotics (AROB), Masanori Sugisaka (Ed.), Beppu, Japan, pp. 138–141.
Pfeifer, R., and Scheier, C. (1999), Understanding Intelligence, MIT Press.
Urzelai, J., Floreano, D., Dorigo, M., and Colombetti, M. (1998), “Incremental Robot Shaping”, Connection Science Journal, Vol. 10, No. 384, pp. 341–360.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Becerra, J.A., Santos, J., Duro, R.J. (2003). Multimodule Artificial Neural Network Architectures for Autonomous Robot Control Through Behavior Modulation. In: Mira, J., Álvarez, J.R. (eds) Artificial Neural Nets Problem Solving Methods. IWANN 2003. Lecture Notes in Computer Science, vol 2687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44869-1_22
Download citation
DOI: https://doi.org/10.1007/3-540-44869-1_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40211-4
Online ISBN: 978-3-540-44869-3
eBook Packages: Springer Book Archive