[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Red-Blue Separability Problems in 3D

  • Conference paper
  • First Online:
Computational Science and Its Applications — ICCSA 2003 (ICCSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2669))

Included in the following conference series:

Abstract

In this paper we study the problems of separability of two disjoint point sets in 3D by multiple criteria extending some notions on separability of two disjoint point sets in the plane.

Partially supported by Proyectos DGES-MEC PB98-0933, UPC 1999SGR000356. Partially supported by Joint Commission USA-Spain for Scientific and Technological Cooperation Project 98191.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. M. Arkin, F. Hurtado, J. S. B. Mitchell, C. Seara, S. S. Skiena, Some Lower Bounds on Geometric Separability Problems, 11th Fall Workshop on Computational Geometry, 2001.

    Google Scholar 

  2. B. Aronov, M. Sharir, B. Tagansky The Union of Convex Polyhedral in Three Dimensions, SIAM J. Comput., Vol. 26, No. 6, 1997, pp. 1670–1688.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Chazelle, H. Edelsbrunner, An Optimal Algorithm for Intersecting Line Segments, Journal of ACM, 39, 1992, pp. 1–54.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Davis, Computing Separating Planes for a Pair of Disjoint Polytopes, Proceedings of the first Annual Symposium on Computational Geometry, 1985, pp. 8–14.

    Google Scholar 

  5. H. Edelsbrunner, F. P. Preparata, Minimum Polygonal Separation, Information and Computation, 77, 1988, pp. 218–232.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. E. Houle, Algorithms for Weak and Wide Separation of Sets, Discrete Applied Mathematics, Vol. 45, 1993, pp. 139–159.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Hurtado, M. Noy, P. A. Ramos, C. Seara, Separating Objects in the Plane with Wedges and Strips, Discrete Applied Mathematics, Vol. 109, 2001, pp. 109–138.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Hurtado, M. Mora, P. A. Ramos, C. Seara, Two Problems on Separability with Lines and Polygonal, 15th European Workshop on Computational Geometry, 1999, pp. 33–35.

    Google Scholar 

  9. G. O. Katona, On a Problem of L. Fejes Tth, Stud. Sci. Math. Hung., 12, 1977, pp. 77–80.

    MATH  MathSciNet  Google Scholar 

  10. N. Megiddo, Linear-time Algorithms for Linear Programming in ℝ 3 and Related Problems, SIAM J. Computer, Vol. 12, No. 4, 1983, pp. 759–776.

    Article  MATH  MathSciNet  Google Scholar 

  11. F. P. Preparata, S. J. Hong, Convex Hulls of Finite Sets of Points in Two and Three Dimensions, Communications of the ACM, 20, 1977, pp. 87–93.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hurtado, F., Seara, C., Sethia, S. (2003). Red-Blue Separability Problems in 3D. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44842-X_78

Download citation

  • DOI: https://doi.org/10.1007/3-540-44842-X_78

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40156-8

  • Online ISBN: 978-3-540-44842-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics