[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computing in Nonlinear Media: Make Waves, Study Collisions

  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2159))

Included in the following conference series:

Abstract

Over the last decade there has been growing interest in new computing algorithms, architectures and materials. Computation based on wave dynamics and reaction-diffusion processes in chemical, physical and biological systems is one of the new approaches being followed. In this talk I will provide a brief account of the subject. Nonlinear media exhibit a variety of spatio-temporal phenomena. Circular waves, spiral waves, and self-localized mobile excitations are the most familiar examples. How to use these phenomena to perform useful computations? I will show that diverse problems are solved in active nonlinear media, where data and results are given by spatial defects and information processing is implemented via spreading and interaction of phase or diffusive waves. Amusing examples from various fields of science will illustrate vitality of the approach: thin layer chemical reactors, cellular automata machines, diffusive ant families, molecular arrays, and pools of doxastic entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky A. Computation in Nonlinear Media and Automata Collectives (Institute of Physics Publishing, 2001).

    Google Scholar 

  2. Adamatzky A. Space-time dynamic of normalized doxatons: automata models of pathological collective mentality Chaos, Solitons and Fractals 12 (2001) 1629–1656.

    Article  MATH  MathSciNet  Google Scholar 

  3. Adamatzky A. Pathology of collective doxa. Automata model. Appl. Math. Comput..

    Google Scholar 

  4. Bang O., Christiansen P.L., If F., Rasmussen K. Ø. and Gaididei Y. Temperature effects in a nonlinear model of monolayer Scheibe aggregates Phys. Rev. E 49 (1994) 4627–4635.

    Google Scholar 

  5. Bartnik E.A. and Tuszynski J.A. Theoretical models of energy transfer in two-dimensional molecular assemblies Phys. Rev. E 48 (1993) 1516–1528.

    Google Scholar 

  6. Blittersdorf R., Müller M. and Schneider F. W. Chemical visualization of Boolean functions: A simple chemical computer J. Chem. Educat. 72 (1995) 760–763.

    Article  Google Scholar 

  7. Brown J.A. and Tuszynski J.A. Dipole interactions in axonal microtubules as a mechanism of signal propagation Phys. Rev. E 56 (1997) 5834–5839.

    Google Scholar 

  8. Epstein I.R. and Showalter K. Nonlinear chemical dynamics: oscillations, patterns and chaos J. Phys. Chem. 100 (1996) 13132–13147.

    Article  Google Scholar 

  9. Forinash K., Peyrard M. and Malomed B. Interaction of discrete breathers with impurity modes Phys. Review E 49 (1994) 3400–3411.

    Google Scholar 

  10. Forinash K., Cretegny T. and Peyrard M. Local modes and localizations in a multicomponent lattices Phys. Rev. 55 (1997) 4740–4756.

    Google Scholar 

  11. Ilachinski A. Irreducible semi-autonomous adaptive combat (ISAAC): An artificial-life approach to land warfare CNA Research Memo. 91-61.10 (1997).

    Google Scholar 

  12. Krinski V.I. Auotwaves: results, problems, outlooks In: Self-Organization: Autowaves and Structures Far From Equilibrium (Springer-Verlag, 1984) 9–19.

    Google Scholar 

  13. Thomson W. (Lord Kelvin) On an instrument for calculating integral of the product of two given functions Proc. Roy. Soc. London 24 (1876) 266–275.

    Google Scholar 

  14. Moebius D. and Kuhn H. Energy transfer in monolayers with cyanine dye Scheibe aggregates J. Appl. Phys. 64 (1979) 5138–5141.

    Article  Google Scholar 

  15. Rambidi N.G., Maximychev A.V. and Usatov A.V. Molecular neural network devices based on non-linear dynamic media BioSystems 33 (1994) 125–137.

    Article  Google Scholar 

  16. Steinbock O., Kettunen P. and Showalter K. Chemical wave logic gates J. Phys. Chem. 100 (1996) 49, 18970–18975.

    Article  Google Scholar 

  17. Tóth A. and Showalter K. Logic gates in excitable media J. Chem. Phys. 103 (1995) 2058–2066.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andrew, A. (2001). Computing in Nonlinear Media: Make Waves, Study Collisions. In: Kelemen, J., Sosík, P. (eds) Advances in Artificial Life. ECAL 2001. Lecture Notes in Computer Science(), vol 2159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44811-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44811-X_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42567-0

  • Online ISBN: 978-3-540-44811-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics