Abstract
Many people rely on the recommendations of trusted friends to find restaurants or movies, which match their tastes. But, what if your friends have not sampled the item of interest? Collaborative filtering (CF) seeks to increase the effectiveness of this process by automating the derivation of a recommendation, often from a clique of advisors that we have no prior personal relationship with. CF is a promising tool for dealing with the information overload that we face in the networked world.
Prior works in CF have dealt with improving the accuracy of the predictions. However, it is still challenging to scale these methods to large databases. In this study, we develop an efficient collaborative filtering method, called RecTree (which stands for RECommendation Tree) that addresses the scalability problem with a divide-and-conquer approach. The method first performs an efficient k-means-like clustering to group data and creates neighborhood of similar users, and then performs subsequent clustering based on smaller, partitioned databases. Since the progressive partitioning reduces the search space dramatically, the search for an advisory clique will be faster than scanning the entire database of users. In addition, the partitions contain users that are more similar to each other than those in other partitions. This characteristic allows RecTree to avoid the dilution of opinions from good advisors by a multitude of poor advisors and thus yielding a higher overall accuracy.
Based on our experiments and performance study, RecTree outperforms the well-known collaborative filter, CorrCF, in both execution time and accuracy. In particular, RecTree’s execution time scales by O(nlog2(n)) with the dataset size while CorrCF scales quadratically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C.C. Aggarwal, C. Procopiuc, J.L. Wolf, P.S. Yu, and J.S. Park, Fast Algorithms for Projected Clustering, In SIGMOD’99, Philadephia, PA, June 1999.
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic Subspace Clustering in High Dimensional Data for Data Mining Applications, In SIGMOD’98, Seattle, WA, June 1998.
J.S. Breese, D. Heckerman, and C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering. In Proc. 14th Conf. Uncertainty in Artificial Intelligence (UAI-98), pp. 43–52, San Franciso, CA, July 1998.
K. Goldberg, T. Roeder, D. Gupta and C. Perkins, Eigentaste: A Constant Time Collaborative Filtering Algorithm, Information Retrieval, 2001.
N. Good, J.B. Schafer, J.A. Konstan, A. Borchers, B. Sarwar, J. Herlocker and J. Riedl, Combining Collaborative Filtering with Personal Agents for Better Recommendations, In AAAI-99, July 1999.
S. Guha, R. Rastogi, and K. Shim, CURE: An Efficient Clustering Algorithm for Large Databases, In SIGMOD’9), pp. 73–84, Seattle, WA, June 1998.
J. Han, S. Chee, and J.Y. Chiang, Issues for On-Line Analytical Mining of Data Warehouses, In Proc. 1998 SIGMOD’96 Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD’98), Seattle, Washington, June 1998
J.L. Herlocker, J.A. Konstan, A. Borchers, and J. Riedl, An Algorithmic Framework for Performing Collaborative Filtering, In Proc. 1999 Conf. Research and Development in Information Retrieval, pp. 230–237, Berkeley, CA, August 1999.
L. Kaufman and P. Rousseeuw, Finding Groups in Data, An Introduction to Clustering Analysis. John Wiley and Sons, 1989.
J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon, and J. Riedl, Applying Collaborative Filtering to Usenet News, CACM, 40(3): 77–87, 1997.
P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and J. Riedl, GroupLens: An open architechure for collaborative filtering of netnews. In Proc. ACM Conf. Computer Support Cooperative Work (CSC) 1994, New York, NYOct. 1994.
B.M. Sarwar, J.A. Konstan, A. Borchers, J.L. Herlocker, B.N. Miller, and J. Riedl, Using Filtering Agents to Improve Prediction Quality in the Grouplens Research Collaborative Filtering System. In Proc. ACM Conf. Computer Support Cooperativ Work (CSCW) 1998, Seattle, WA., pp. 345–354 Nov. 1998.
J.B. Schafer, J. Konstan, and J. Riedl, Recommender Systems in E-Commerce, ACM Conf. Electronic Commerce (EC-99), Denver, CO, pp. 158–166, Nov. 1999.
U. Shardanand and P. Maes, Social information filtering: Algorithms for automating “word of mouth.” In Proc. 1995 ACM Conf. Human Factors in Computing Systems, New York, NY, pp. 210–217, 1995
T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data clustering method for very large databases”, In SIGMOD’96, Montreal, Canada, pp. 103–114, June 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chee, S.H.S., Han, J., Wang, K. (2001). RecTree: An Efficient Collaborative Filtering Method. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2001. Lecture Notes in Computer Science, vol 2114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44801-2_15
Download citation
DOI: https://doi.org/10.1007/3-540-44801-2_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42553-3
Online ISBN: 978-3-540-44801-3
eBook Packages: Springer Book Archive