[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Genetic Algorithm for Satisfiability Problem in a Probabilistic Logic: A First Report

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2143))

  • 771 Accesses

Abstract

This paper introduces a genetic algorithm for satisfiability problem in a probabilistic logic. A local search based improvement procedure is integrated in the algorithm. A test methodology is presented and some results are given. The results indicate that this approach could work well. Some directions for further research are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Bäck, A. E. Eiben, and M. E. Vink. A superior evolutionary algorithm for 3-SAT. In Proc. of the 7th Annual Conference on Evolutionary Programming, LNCS 1744, 125–136, 1998.

    Google Scholar 

  2. D. Beasley, D. R. Bull, and R. R. Martin. An Overview of Genetic Algorithms, Part 1: Fundamentals. University Computing, Vol. 15, No. 2, pp. 58–69, 1993.

    Google Scholar 

  3. A. Cano and S. Moral. A genetic algorithm to approximate convex sets of probabilities. In Proc. of the IPMU-96, Vol. 2, 859–864, 1996.

    Google Scholar 

  4. P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are. In Proc. of the IJCAI-91. 331–337, 1991.

    Google Scholar 

  5. K. A. De Jong and W. M. Spears. Using genetic algorithms to solve NP-complete problems. In 3th International Conference on Genetic Algorithms, 124–132. 1989.

    Google Scholar 

  6. R. Fagin, J. Halpern, and N. Megiddo. A logic for reasoning about probabilities. Information and Computation, 87:78–128, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Fagin and J. Halpern. Reasoning about knowledge and probability. JACM, 41(2):340–367, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Frish and P. Haddawy. Anytime deduction for probabilistic logic. Artificial Intelligence, 69:93–122, 1994.

    Article  MathSciNet  Google Scholar 

  9. G. Georgakopoulos, D. Kavvadias, and C. Papadimitriou. Probabilistic satisfiability. Journal of Complexity, 4(1):1–11, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Weseley Publ. Reading, Mass., 412p, 1989.

    MATH  Google Scholar 

  11. J. Y. Halpern. A logical approach to reasoning about uncertainty: A tutorial. In X. Arrazola, K. Korta, and F. J. Pelletier, editors, Discourse, Interaction, and Communication. Kluwer, 1997.

    Google Scholar 

  12. P. Hansen, B. Jaumard, G.-B. D. Nguetse, and M. P. de Aragao. Models and algorithms for probabilistic and Bayesian logic. In Proceedings IJCAI-95, 1862–1868, 1995.

    Google Scholar 

  13. J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor 1975.

    Google Scholar 

  14. B. Jaumard, P. Hansen, and M. P. de Aragao. Column generation methods for probabilistic logic. ORSA Journal on Computing, 3:135–147, 1991.

    MATH  Google Scholar 

  15. J. Kratica. Improving Performances of the Genetic Algorithm by Caching. Computers and Artificial Intelligence, Vol. 18, No. 3, pp. 271–283, 1999.

    MATH  Google Scholar 

  16. J. Kratica. Parallelization of Genetic Algorithms for Solving Some NP-Complete Problems. Ph.D. thesis, University of Belgrade, Faculty of Mathematics, 2000. (in Serbian)

    Google Scholar 

  17. E. Marchiori, and C. Rossi. A flipping genetic algorithm for hard 3-SAT problems. In Proc. of the Genetic and Evolutionary Computation Conference, 1999.

    Google Scholar 

  18. E. Marchiori, and A. Steenbeek. A genetic local search algorithm for random binary constraint satisfaction problems. In Proc. of the SAC2000.

    Google Scholar 

  19. N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  20. Z. Ognjanović and M. Rasković. Some probability logics with new types of probability operators. Journal of Logic and Computation, 9(2):181–195, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  21. Z. Ognjanović and M. Rasković. Some first-order probability logics. Theoretical Computer Science, 247(1–2):191–212, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Rasković. Classical logic with some probability operators. Publications de l’Institut Mathématique, Nouvelle Série, Beograd, 53(67):1–3, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ognjanović, Z., Kratica, J., Milovanović, M. (2001). A Genetic Algorithm for Satisfiability Problem in a Probabilistic Logic: A First Report. In: Benferhat, S., Besnard, P. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2001. Lecture Notes in Computer Science(), vol 2143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44652-4_71

Download citation

  • DOI: https://doi.org/10.1007/3-540-44652-4_71

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42464-2

  • Online ISBN: 978-3-540-44652-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics