Abstract
In the ICCS 2000 proceedings we introduced negation to simple concept graphs without generic markers by adding cuts to their definition. The aim of this paper is to extend this approach of cuts to simple concept graphs with generic markers. For these graphs, a set-theoretical semantics is presented. After this a modification of Peirce’s beta-calculus is provided, and definitions for mappings Φ and Ψ between concept graps and first order logic are given. If we consider both concept graphs and first order logic formulas, together with their particular derivability relations, as quasiorders, Φ and Ψ are mutually inverse quasiorder isomorphisms between them. The meaning of this fact is elaborated. Finally we provide a result that links the semantics of concept graphs and the semantics of first order logic. This result can be used to show that the calculus for concept graphs is sound and complete.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
F. Baader, R. Molitor, S. Tobies: The Guarded Fragment of Conceptual Graphs. RWTH LTCS-Report. http://www-lti.informatik.rwth-aachen.de/Forschung/Papers.html
F. Dau: Negations in Simple Concept Graphs, in: B. Ganter, G. W. Mineau (Eds.): Conceptual Structures: Logical, Linguistic, and Computational Issues. Lectures Notes in Artificial Intelligence 1867, Springer Verlag, Berlin-New York 1997, 263–276.
F. Dau, Negations in Concept Graphs. PhD-Thesis. To appear.
B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin-Heidelberg-New York 1999.
C. S. Peirce: Reasoning and the Logic of Things. The Cambridge Conferences Lectures of 1898. Ed. by K. L. Kremer, Harvard Univ. Press, Cambridge 1992.
S. Prediger: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur Restrukturierung der mathematischen Logik, Shaker Verlag 1998.
S. Prediger: Simple Concept Graphs: A Logic Approach, in: M.-L. Mugnier, M. Chein (Eds.): Conceptual Structures: Theory, Tools and Applications, Springer Verlag, Berlin-New York 1998, 225–239.
D. D. Roberts: The Existential Graphs of Charles Sanders Peirce, Mouton The Hague-Paris 1973.
J. F. Sowa: Conceptual Structures: Information Processing in Mind and Machine. Addison Wesley Publishing Company Reading, 1984.
J. F. Sowa: Conceptual Graphs: Draft Proposed American National Standard, in: W. Tepfenhart, W. Cyre (Eds.): Conceptual Structures: Standards and Practices, Springer Verlag, Berlin-New York 1999, 1–65.
J. F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove, CA, 2000.
M. Wermelinger: Conceptual Graphs and First-Order Logic, in: G. Ellis et al. (Eds.): Conceptual Structures: Applications, Implementations and Theory, Springer Verlag, Berlin-New York 1995, 323–337.
R. Wille: Conceptual Graphs and Formal Concept Analysis, in: D. Lukose et al. (Hrsg.): Conceptual Structures: Fulfilling Peirce’s Dream, Lectures Notes in Artificial Intelligence 1257, Springer Verlag, Berlin-New York 1997, 290–303.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dau, F. (2001). Concept Graphs and Predicate Logic. In: Delugach, H.S., Stumme, G. (eds) Conceptual Structures: Broadening the Base. ICCS 2001. Lecture Notes in Computer Science(), vol 2120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44583-8_6
Download citation
DOI: https://doi.org/10.1007/3-540-44583-8_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42344-7
Online ISBN: 978-3-540-44583-8
eBook Packages: Springer Book Archive