[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Concept Graphs and Predicate Logic

  • Conference paper
  • First Online:
Conceptual Structures: Broadening the Base (ICCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2120))

Included in the following conference series:

Abstract

In the ICCS 2000 proceedings we introduced negation to simple concept graphs without generic markers by adding cuts to their definition. The aim of this paper is to extend this approach of cuts to simple concept graphs with generic markers. For these graphs, a set-theoretical semantics is presented. After this a modification of Peirce’s beta-calculus is provided, and definitions for mappings Φ and Ψ between concept graps and first order logic are given. If we consider both concept graphs and first order logic formulas, together with their particular derivability relations, as quasiorders, Φ and Ψ are mutually inverse quasiorder isomorphisms between them. The meaning of this fact is elaborated. Finally we provide a result that links the semantics of concept graphs and the semantics of first order logic. This result can be used to show that the calculus for concept graphs is sound and complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Baader, R. Molitor, S. Tobies: The Guarded Fragment of Conceptual Graphs. RWTH LTCS-Report. http://www-lti.informatik.rwth-aachen.de/Forschung/Papers.html

  2. F. Dau: Negations in Simple Concept Graphs, in: B. Ganter, G. W. Mineau (Eds.): Conceptual Structures: Logical, Linguistic, and Computational Issues. Lectures Notes in Artificial Intelligence 1867, Springer Verlag, Berlin-New York 1997, 263–276.

    Chapter  Google Scholar 

  3. F. Dau, Negations in Concept Graphs. PhD-Thesis. To appear.

    Google Scholar 

  4. B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin-Heidelberg-New York 1999.

    MATH  Google Scholar 

  5. C. S. Peirce: Reasoning and the Logic of Things. The Cambridge Conferences Lectures of 1898. Ed. by K. L. Kremer, Harvard Univ. Press, Cambridge 1992.

    Google Scholar 

  6. S. Prediger: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur Restrukturierung der mathematischen Logik, Shaker Verlag 1998.

    Google Scholar 

  7. S. Prediger: Simple Concept Graphs: A Logic Approach, in: M.-L. Mugnier, M. Chein (Eds.): Conceptual Structures: Theory, Tools and Applications, Springer Verlag, Berlin-New York 1998, 225–239.

    Chapter  Google Scholar 

  8. D. D. Roberts: The Existential Graphs of Charles Sanders Peirce, Mouton The Hague-Paris 1973.

    Google Scholar 

  9. J. F. Sowa: Conceptual Structures: Information Processing in Mind and Machine. Addison Wesley Publishing Company Reading, 1984.

    MATH  Google Scholar 

  10. J. F. Sowa: Conceptual Graphs: Draft Proposed American National Standard, in: W. Tepfenhart, W. Cyre (Eds.): Conceptual Structures: Standards and Practices, Springer Verlag, Berlin-New York 1999, 1–65.

    Chapter  Google Scholar 

  11. J. F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove, CA, 2000.

    Google Scholar 

  12. M. Wermelinger: Conceptual Graphs and First-Order Logic, in: G. Ellis et al. (Eds.): Conceptual Structures: Applications, Implementations and Theory, Springer Verlag, Berlin-New York 1995, 323–337.

    Google Scholar 

  13. R. Wille: Conceptual Graphs and Formal Concept Analysis, in: D. Lukose et al. (Hrsg.): Conceptual Structures: Fulfilling Peirce’s Dream, Lectures Notes in Artificial Intelligence 1257, Springer Verlag, Berlin-New York 1997, 290–303.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dau, F. (2001). Concept Graphs and Predicate Logic. In: Delugach, H.S., Stumme, G. (eds) Conceptual Structures: Broadening the Base. ICCS 2001. Lecture Notes in Computer Science(), vol 2120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44583-8_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44583-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42344-7

  • Online ISBN: 978-3-540-44583-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics