Abstract
In this paper, we describe the use of an automatic performance analysis tool for describing the behaviour of a parallel application. KappaPi tool includes a list of techniques that may help the non-expert users in finding the most important performance problems of their applications. As an example, the tool is used to tune the performance of a parallel simulation of a forest fire propagation model
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Pancake, C. M., Simmons, M. L., Yan JC.: „Perfonnance Evaluation Tools for Parallel and Distributed Systems“. lEEE Computer, November 1995, vol. 28, p. 16–19.
Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V., „PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for Network Parallel Computing“. MIT Press, Cambridge, MA, 1994.
Gropp W., Nitzberg B., Lusk E., Snir M.: „Mpi: The Complete Reference: The Mpi Core/the Mpi Extensions. Scientific and Engineering Computation Series“. The MIT Press. Cambridge, MA, 1998.
Heath, M. T., Etheridge, J.A.: „Visualizing the performance of parallel programs“. IEEE Computer, November 1995, vol. 28, p. 21–28.
Reed, D. A., Giles, R. C., Catlett, C.E.. Distributed Data and Immersive Collabolation.. Communications of the ACM. November 1997. Vol. 40, No 11. p. 3948.
Hollingsworth, J. K., Miller, B,P.: „Dynamic Control of Performance Monitoring on Large Scale Parallel Systems“. International Conference on Supercomputing (Tokyo, July 1993).
Yan, Y. C., Sarukhai, S.R.: „Analyzing palallel program performance using normalized performance indices and trace transformation techniques“. Parallel Computing 22 (1996) 1215–1237.
Crovella, M.E. and LeBlanc, T.J.: „The search for Lost Cycles: A New approach to parallel performance evaluation“. TR479. The Unhersity of Rochester, Computer Science Department, Rochester, New York, December 1994.
Fahringer T.: „Automatic Performance Prediction of Parallel Programs“. Kluwer Academic Publishers. 1996.
Espinosa, A., Margalef, T. and Luque, E.: „Automatic Performance Evaluation of Parallel Programs“. Proc. of the 6th EUROMICRO Workshop on Parallel and Distributed Processing, pp. 4349. IEEE CS. 1998. http://www.caos.uab.es/kpi.html
Jorba, J., Margalef, T., Luque, E., Andre, J., Viegas, D.X.: “Application of Parallel Computing to the Simulation of Forest Fire Propagation”. Proc. 3td International Conference in Forest Fire Propagation, Vol. 1, pp. 891–900, Luso, Nov. 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Espinosa, A., Margalef, T., Luque, E. (2000). Integrating Automatic Techniques in a Performance Analysis Session. In: Bode, A., Ludwig, T., Karl, W., Wismüller, R. (eds) Euro-Par 2000 Parallel Processing. Euro-Par 2000. Lecture Notes in Computer Science, vol 1900. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44520-X_22
Download citation
DOI: https://doi.org/10.1007/3-540-44520-X_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67956-1
Online ISBN: 978-3-540-44520-3
eBook Packages: Springer Book Archive