Abstract
We propose in this paper a new framework to develop a transparent classifier able to deal with reject notions. The generated classifier can be characterized by a strong reliability without loosing good properties in generalization. We show on a musical scores recognition system that this classifier is very well suited to develop a complete document recognition system. Indeed this classifier allows them firstly to extract known symbols in a document (text for example) and secondly to validate segmentation hypotheses. Tests had been successfully performed on musical and digit symbols databases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
E. Anquetil and G. Lorette. Automatic generation of hierarchical fuzzy classification systems based on explicit fuzzy rules deduced from possibilistic clustering: Application to on-line handwritten character recognition. In Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU96), pages 259–264, 1996. 213
D. Bainbridge and N. P. Carter. Automatic reading of music notation. In P. S. P. Wang H. Bunke, editor, Handbook of Character Recognition and Document Image Analysis, pages 583–603. World Scientific, 1997. 212
J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981. 213
C. M. Bishop. Neural networks for pattern recognition. Oxford University Press Inc., 1995. 212
A. K. Chhabra. Graphic symbol recognition: An overview. In K. Tombre and A. K. Chhabra, editors, Graphics Recognition, Algorithms and Systems, number 1389 in LNCS. Springer, 1998. 209
B. Coüasnon and J. Camillerapp. Using grammars to segment and recognize music scores. In L. Spitz and A. Dengel, editors, Document Analysis Systems. World Scientific, 1995. 210
B. Coüasnon and J. Camillerapp. A way to separate knowledge from program in structured document analysis: application to optical music recognition. In ICDAR, International Conference on Document Analysis and Recognition, volume 2, pages 1092–1097, Montréal, Canada, August 1995. 211
David E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, 1989. 214
Simon Haykin. Neural Networks, a comprehensive foundation. Prentice Hall, 1997. 212
R. Krishnapuram. Generation of membership functions via possibilistic clustering. In IEEE World congress on computational intelligence, pages 902–908, 1994. 213
R. P. Lippmann. Pattern classification using neural networks. IEEE Communications Magazine, 27:47–64, 1989. 213
V. Poulain d’Andecy, J. Camillerapp, and I. Leplumey. Kalman filtering for segment detection: application to music scores analysis. In ICPR, 12th International Conference on Pattern Recognition (IAPR), volume 1, pages 301–305, Jrusalem, Israel, October 1994. 212
Ching Y. Suen Shunji Mori and Kazuhiko Yamamoto. Historical review of ocr research and development. Proceedings of the IEEE, 80(7), July 1992. 212
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Anquetil, É., Coüasnon, B., Dambreville, F. (2000). A Symbol Classifier Able to Reject Wrong Shapes for Document Recognition Systems. In: Chhabra, A.K., Dori, D. (eds) Graphics Recognition Recent Advances. GREC 1999. Lecture Notes in Computer Science, vol 1941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40953-X_17
Download citation
DOI: https://doi.org/10.1007/3-540-40953-X_17
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41222-9
Online ISBN: 978-3-540-40953-3
eBook Packages: Springer Book Archive