[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Symbol Classifier Able to Reject Wrong Shapes for Document Recognition Systems

  • Conference paper
  • First Online:
Graphics Recognition Recent Advances (GREC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1941))

Included in the following conference series:

Abstract

We propose in this paper a new framework to develop a transparent classifier able to deal with reject notions. The generated classifier can be characterized by a strong reliability without loosing good properties in generalization. We show on a musical scores recognition system that this classifier is very well suited to develop a complete document recognition system. Indeed this classifier allows them firstly to extract known symbols in a document (text for example) and secondly to validate segmentation hypotheses. Tests had been successfully performed on musical and digit symbols databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Anquetil and G. Lorette. Automatic generation of hierarchical fuzzy classification systems based on explicit fuzzy rules deduced from possibilistic clustering: Application to on-line handwritten character recognition. In Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU96), pages 259–264, 1996. 213

    Google Scholar 

  2. D. Bainbridge and N. P. Carter. Automatic reading of music notation. In P. S. P. Wang H. Bunke, editor, Handbook of Character Recognition and Document Image Analysis, pages 583–603. World Scientific, 1997. 212

    Google Scholar 

  3. J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981. 213

    MATH  Google Scholar 

  4. C. M. Bishop. Neural networks for pattern recognition. Oxford University Press Inc., 1995. 212

    Google Scholar 

  5. A. K. Chhabra. Graphic symbol recognition: An overview. In K. Tombre and A. K. Chhabra, editors, Graphics Recognition, Algorithms and Systems, number 1389 in LNCS. Springer, 1998. 209

    Google Scholar 

  6. B. Coüasnon and J. Camillerapp. Using grammars to segment and recognize music scores. In L. Spitz and A. Dengel, editors, Document Analysis Systems. World Scientific, 1995. 210

    Google Scholar 

  7. B. Coüasnon and J. Camillerapp. A way to separate knowledge from program in structured document analysis: application to optical music recognition. In ICDAR, International Conference on Document Analysis and Recognition, volume 2, pages 1092–1097, Montréal, Canada, August 1995. 211

    Google Scholar 

  8. David E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, 1989. 214

    Google Scholar 

  9. Simon Haykin. Neural Networks, a comprehensive foundation. Prentice Hall, 1997. 212

    Google Scholar 

  10. R. Krishnapuram. Generation of membership functions via possibilistic clustering. In IEEE World congress on computational intelligence, pages 902–908, 1994. 213

    Google Scholar 

  11. R. P. Lippmann. Pattern classification using neural networks. IEEE Communications Magazine, 27:47–64, 1989. 213

    Article  Google Scholar 

  12. V. Poulain d’Andecy, J. Camillerapp, and I. Leplumey. Kalman filtering for segment detection: application to music scores analysis. In ICPR, 12th International Conference on Pattern Recognition (IAPR), volume 1, pages 301–305, Jrusalem, Israel, October 1994. 212

    Google Scholar 

  13. Ching Y. Suen Shunji Mori and Kazuhiko Yamamoto. Historical review of ocr research and development. Proceedings of the IEEE, 80(7), July 1992. 212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anquetil, É., Coüasnon, B., Dambreville, F. (2000). A Symbol Classifier Able to Reject Wrong Shapes for Document Recognition Systems. In: Chhabra, A.K., Dori, D. (eds) Graphics Recognition Recent Advances. GREC 1999. Lecture Notes in Computer Science, vol 1941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40953-X_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-40953-X_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41222-9

  • Online ISBN: 978-3-540-40953-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics