[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Deconvolution and Credible Intervals using Markov Chain Monte Carlo Method

  • Conference paper
  • First Online:
Medical Data Analysis (ISMDA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1933))

Included in the following conference series:

Abstract

In certain applications, e.g. during reconstruction of pulsatile hormone secretion, the traditional deterministic deconvolution techniques fail primarily due to ill conditioning. To overcome these problems, deconvolution was formulated using a stochastic approach within the Bayesian modelling framework. The stochastic deconvolution with a piece-wise constant definition of the signal (the input function) cannot be solved analytically but the solution was found by employing Markov chain Monte Carlo method. A computationally efficient sampling algorithm combined with a discrete deconvolution method was employed. An example analysis demonstrated the application of the stochastic deconvolution method to the estimation of hormone (insulin) secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in Practice, Chapman & Hall, London, 1996.

    MATH  Google Scholar 

  2. A. F. M. Smith, “Bayesian computational methods”, Phil. Trans. R. Soc. Lond. A, vol. 337, pp. 369–386, 1991.

    Article  MATH  Google Scholar 

  3. A. F. M. Smith and G. O. Roberts, “Bayesian computation via the Gibbs sampler and related Markov-chain Monte-Carlo methods”, J.Roy.Statist.Soc.B., vol. 55, pp. 3–23, 1993.

    MATH  MathSciNet  Google Scholar 

  4. D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind”, J. Assoc. Comput. Mach., vol. 9, pp. 97–101, 1962.

    Google Scholar 

  5. S. Twomey, “The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements”, J. Franklin Inst., vol. 279, pp. 95–109, 1965.

    Article  MathSciNet  Google Scholar 

  6. R. Hovorka, M. J. Chappell, K. R. Godfrey, F. N. Madden, M. K. Rouse, and P. A. Soons, “CODE: A deconvolution program implementing a regularisation method of deconvolution constrained to non-negative values. description and pilot evaluation”, Biopharm. Drug Dispos., vol. 19, pp. 39–53, 1998.

    Article  Google Scholar 

  7. A. Jeffreys, The Theory of Probability, Cambridge University Press, Cambridge, 1961.

    Google Scholar 

  8. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machine”, J. Chem. Phys., vol. 21, pp. 1087–1091, 1953.

    Article  Google Scholar 

  9. W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications”, Biometrika, vol. 57, pp. 97–109, 1970.

    Article  MATH  Google Scholar 

  10. S. Chib and E. Greenberg, “Understanding the Metropolis-Hastings algorithm”, Amer. Statist., vol. 49, pp. 327–335, 1995.

    Article  Google Scholar 

  11. W. R. Gilks, N. G. Best, and K. K. C. Tan, “Adaptive rejection Metropolis sampling within Gibbs sampling”, Appl. Statist., vol. 44, pp. 455–472, 1995.

    Article  MATH  Google Scholar 

  12. D. R. Matthews, D. A. Lang, M. A. Burnett, and R. C. Turner, “Control of pulsatile insulin secretion in man”, Diabetologia, vol. 24, pp. 231–237, 1983.

    Article  Google Scholar 

  13. B. Gumbiner, E. V. Van Cauter, W. F. Beltz, T. M. Ditzler, K. Griver, K. S. Polonsky, and R. R. Henry, “Abnormalities of insulin pulsatility and glucose oscillations during meals in obese noninsulin-dependent diabetic patients: effects of weight reduction”, J. Clin. Endocrinol. Metab., vol. 81, pp. 2061–2068, 1996.

    Article  Google Scholar 

  14. N. M. O’Meara, J. Sturis, J. D. Blackman, D. C. Roland, E. Van Cauter, and K. S. Polonsky, “Analytical problems in detecting rapid insulin secretory pulses in normal humans”, Am. J. Physiol., vol. 264, pp. E231–E238, 1993.

    Google Scholar 

  15. R. Hovorka and R. H. Jones, “How to measure insulin secretion”, Diabetes/Metabolism Rev., vol. 10, pp. 91–117, 1994.

    Article  Google Scholar 

  16. E. V. Van Cauter, F. Mestrez, J. Sturis, and K. S. Polonsky, “Estimation of insulin-secretion rates from C-peptide levels-comparison of individual and standard kinetic-parameters for C-peptide clearance”, Diabetes, vol. 41, pp. 368–377, 1992.

    Article  Google Scholar 

  17. N. Best, M. K. Cowles, and S. K. Vines, CODA: Convergence Diagnosis and Output Analysis Software for Gibbs Sampling Output, Version 0.40, MRC Biostatistics Unit, Cambridge, 1997.

    Google Scholar 

  18. M. K. Charter and S. F. Gull, “Maximum entropy and its application to the calculation of drug absorption rates”, J. Pharmacokin. Biopharm., vol. 15, pp. 645–655, 1987.

    Article  Google Scholar 

  19. D. Verotta, “Two constrained deconvolution methods using spline functions”, J. Pharmacokin. Biopharm., vol. 21, pp. 609–636, 1993.

    Article  Google Scholar 

  20. D. J. Cutler, “Numerical deconvolution by least squares: Use of polynomials to represent the input function”, J. Pharmacokin. Biopharm., vol. 6, pp. 243–263, 1978.

    Article  Google Scholar 

  21. D. J. Cutler, “Numerical deconvolution using least squares: Use of prescribed input functions”, J. Pharmacokin. Biopharm., vol. 6, pp. 227–241, 1978.

    Article  Google Scholar 

  22. S. Vajda, K. R. Godfrey, and P. Valko, “Numerical deconvolution using system identification methods”, J. Pharmacokin. Biopharm., vol. 16, pp. 85–107, 1988.

    Article  Google Scholar 

  23. P. Veng-Pedersen and N. B. Modi, “An algorithm for constrained deconvolution based on reparametrization”, J. Pharm. Sci., vol. 81, pp. 175–180, 1992.

    Article  Google Scholar 

  24. R. Bellazzi, G. Magni, and G. De Nicolao, “Gibbs sampling for signal reconstruction”, in Proceedings of the 3rd IFAC International Symposium Modelling and Control in Biomedical Systems (Including Biological Systems), D. A. Linkens and E. R. Carson, Eds., Oxford, 1997, pp. 271–276, Elsevier.

    Google Scholar 

  25. P. Magni, R. Bellazzi, and G. De Nicolao, “Bayesian function learning using MCMC methods”, IEEE Trans. Pattn. Anal. Mach. Intell., vol. 20, pp. 1319–1331, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hovorka, R. (2000). Deconvolution and Credible Intervals using Markov Chain Monte Carlo Method. In: Brause, R.W., Hanisch, E. (eds) Medical Data Analysis. ISMDA 2000. Lecture Notes in Computer Science, vol 1933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39949-6_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-39949-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41089-8

  • Online ISBN: 978-3-540-39949-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics