[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

New Graph Classes of Bounded Clique-Width

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2573))

Included in the following conference series:

Abstract

Clique-width of graphs is a major new concept with respect to efficiency of graph algorithms; it is known that every algorithmic problem expressible in a certain kind of Monadic Second Order Logic called LinEMSOL(τ 1,L ) by Courcelle, Makowsky and Rotics, is solvable in linear time on any graph class with bounded clique-width for which a k-expression for the input graph can be constructed in linear time. The concept of clique-width extends the one of treewidth since bounded treewidth implies bounded clique-width.

We give a complete classification of all graph classes defined by forbidden one-vertex extensions of the P 4 with respect to their clique-width. Our results extend and improve recently published structural and complexity results in a systematic way.

Research of the first author partially supported by Kent State University, Kent, Ohio, research of the third and fourth author partially supported by German Research Community DFG Br 1446-4/1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.-J. Bandelt, H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory (B) 41 (1986) 182–208

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Brandstädt, (P5,diamond)-Free Graphs Revisited: Structure, Bounded cliquewidth and Linear Time Optimization, Manuscript 2000; accepted for Discrete Applied Math.

    Google Scholar 

  3. A. Brandstädt, C.T. Hoàng, V.B. Le, Stability Number of Bull-and Chair-Free Graphs Revisited, Manuscript 2001; accepted for Discrete Applied Math.

    Google Scholar 

  4. A. Brandstädt, D. Kratsch, On the structure of (P5,gem)-free graphs, Manuscript 2001

    Google Scholar 

  5. A. Brandstädt, H.-O. Le, R. Mosca, Chordal co-gem-free graphs have bounded clique-width, Manuscript 2002

    Google Scholar 

  6. A. Brandstädt, H.-O. Le, R. Mosca, (Gem,co-gem)-free graphs have bounded clique-width, Manuscript 2002

    Google Scholar 

  7. A. Brandstädt, V.B. Le, J. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia (1999)

    Google Scholar 

  8. A. Brandstädt, H.-O. Le, J.-M. Vanherpe, Structure and Stability Number of (Chair, Co-P, Gem)-Free Graphs, Manuscript 2001

    Google Scholar 

  9. A. Brandstädt, S. Mahfud, Linear time for Maximum Weight Stable Set on (claw,co-claw)-free graphs and similar graph classes, Manuscript 2001; to appear in Information Processing Letters

    Google Scholar 

  10. A. Brandstädt, R. Mosca, On the Structure and Stability Number of P5-and Co-Chair-Free Graphs, Manuscript 2001; accepted for Discrete Applied Math.

    Google Scholar 

  11. A. Brandstädt, R. Mosca, On Variations of P4-Sparse Graphs, Manuscript 2001

    Google Scholar 

  12. D.G. Corneil, H. Lerchs, L. Stewart-Burlingham, Complement reducible graphs, Discrete Applied Math. 3 (1981) 163–174

    Article  MATH  Google Scholar 

  13. D.G. Corneil, Y. Perl, L.K. Stewart, Cographs: recognition, applications, and algorithms, Congressus Numer. 43 (1984) 249–258

    MathSciNet  Google Scholar 

  14. D.G. Corneil, Y. Perl, L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Computing 14 (1985) 926–934

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Courcelle, J. Engelfriet, G. Rozenberg, Handle-rewriting hypergraph grammars, J. Comput. Syst. Sciences, 46 (1993) 218–270

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded clique width, extended abstract in: Conf. Proc. WG’98, LNCS 1517 (1998) 1–16; Theory of Computing Systems 33 (2000) 125-150

    Google Scholar 

  17. B. Courcelle, S. Olariu, Upper bounds to the clique-width of graphs, Discrete Appl. Math. 101 (2000) 77–114

    Article  MATH  MathSciNet  Google Scholar 

  18. C. De Simone, On the vertex packing problem, Graphs and Combinatorics 9 (1993) 19–30

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Földes, P.L. Hammer, Split graphs, Congress. Numer. 19 (1977), 311–315

    Google Scholar 

  20. J.-L. Fouquet, A decomposition for a class of (P5, P5)-free graphs, Discrete Math. 121 (1993) 75–83

    Article  MATH  MathSciNet  Google Scholar 

  21. J.-L. Fouquet, V. Giakoumakis On semi-P4-sparse graphs, Discrete Math. 165–166 (1997) 267–290

    MathSciNet  Google Scholar 

  22. J.-L. Fouquet, V. Giakoumakis, H. Thuillier, F. Maire, On graphs without P5 and P5, Discrete Math. 146 (1995) 33–44

    Article  MATH  MathSciNet  Google Scholar 

  23. M.C. Golumbic, U. Rotics, On the clique-width of some perfect graph classes, Int. Journal of Foundations of Computer Science 11 (2000) 423–443

    Article  MathSciNet  Google Scholar 

  24. A. Hertz, On a graph transformation which preserves the stability number, Yugoslav Journal of Oper. Res., to appear

    Google Scholar 

  25. C.T. Hoàng, A Class of Perfect Graphs, Ms. Sc. Thesis, School of Computer Science, McGill University, Montreal (1983)

    Google Scholar 

  26. C.T. Hoàng, Perfect Graphs, Ph. D. Thesis, School of Computer Science, McGill University, Montreal (1985)

    Google Scholar 

  27. C.T. Hoàng, B. Reed, Some classes of perfectly orderable graphs, J. Graph Theory 13 (1989) 445–463

    Article  MATH  MathSciNet  Google Scholar 

  28. B. Jamison, S. Olariu, A unique tree representation for P4-sparse graphs, Discrete Appl. Math. 35 (1992), 115–129

    Article  MATH  MathSciNet  Google Scholar 

  29. V.V. Lozin, Conic reduction of graphs for the stable set problem, Discrete Math. 222 (2000) 199–211

    Article  MATH  MathSciNet  Google Scholar 

  30. N.V.R. Mahadev, U.N. Peled, Threshold Graphs and Related Topics, Annals of Discrete Mathematics 56 (1995)

    Google Scholar 

  31. J.A. Makowsky, U. Rotics, On the clique-width of graphs with few P4’s, Int. J. of Foundations of Computer Science 3 (1999) 329–348

    Article  MathSciNet  Google Scholar 

  32. R.H. Möhring, F.J. Radermacher, Substitution decomposition for discrete structures and connections with combinatorial optimization, Annals of Discrete Math. 19 (1984) 257–356

    Google Scholar 

  33. M. Yannakakis, The complexity of the partial order dimension problem, SIAM J. Algebraic and Discrete Methods 3 (1982) 351–358

    Article  MATH  MathSciNet  Google Scholar 

  34. I.E. Zverovich, I.I. Zverovich, Extended (P5,P5)-free graphs, Rutcor Research Report RRR 22-2001 (2001) http://rutcor.rutgers.edu/~rrr

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandstädt, A., Dragan, F.F., Le, HO., Mosca, R. (2002). New Graph Classes of Bounded Clique-Width. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds) Graph-Theoretic Concepts in Computer Science. WG 2002. Lecture Notes in Computer Science, vol 2573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36379-3_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-36379-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00331-1

  • Online ISBN: 978-3-540-36379-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics