[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Spatial Subgroup Discovery Applied to the Analysis of Vegetation Data

  • Conference paper
  • First Online:
Practical Aspects of Knowledge Management (PAKM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2569))

Included in the following conference series:

Abstract

We explore the application of Spatial Data Mining, the partially automated search for hidden patterns in georeferenced databases, to the analysis of ecological data. A version of the subgroup mining algorithm is described that searches for deviation patterns directly in a spatial database, automatically incorporating spatial information stored in a GIS into the hypothesis space of a data mining search. We discuss results obtained on a multi-relational biodiversity data set recorded in Niger. Vegetation records are georeferenced and associated with a set of environmental parameters. Further data provide information on climate, soil conditions, and location of spatial objects like rivers, streets and cities. The subgroup mining finds dependencies of a plant species on other species, on local parameters and non-local environmental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrienko, G., Andrienko, N, 1999. Interactive Maps for Visual Data Exploration,International Journal of Geographical Information Science 13(5), 355–374

    Google Scholar 

  2. Dierschke, H. 1994: Pflanzensoziologie. Stuttgart, Ulmer (in German)

    Google Scholar 

  3. Egenhofer, M. J., 1991. Reasoning about Binary Topological Relations, Proc. 2nd Int. Symp. on Large Spatial Databases, Zürich, Switzerland, 143–160

    Google Scholar 

  4. Ester, M., Frommelt, A., Kriegel, H. P, Sander, J., 1999. Spatial Data Mining: Database Primitives, Algorithms and Efficient DBMS Support, in: Data Mining and Knowledge Discovery, 2

    Google Scholar 

  5. Fayyad, U., G. Piatetsky-Shapiro, Uthurusamy, R. (eds.) 1996: Advances in Knowledge Discovery and Data Mining. Menlo Park, AAAI Press

    Google Scholar 

  6. Graefe, G., Fayyad, U., Chaudhuri, S, 1998. On the efficient gathering of sufficient statistics for classification from large SQL databases. Proc. of the 4th Intern. Conf. on Knowledge Discovery and Data Mining, Menlo Park: AAAI Press, 204–208

    Google Scholar 

  7. Imielinski, T., Virmani, A., 2000. A Query Language for Database Mining. Data Mining and Knowledge Discovery, Vol. 3, Nr. 4, 373–408

    Google Scholar 

  8. Kirsten, M., Wrobel, S., Dahmen, F. W., Dahmen, H. C, 1998: Einsatz von Data Mining-Techniken zur Analyse ökologischer Standort-und Pflanzendaten. KI 2/98, 39–42

    Google Scholar 

  9. Klösgen, W., 1996. Explora: A Multipattern and Multistrategy Discovery Assistant. Advances in Knowledge Discovery and Data Mining, eds. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Cambridge, MA: MIT Press, 249–271, 1996

    Google Scholar 

  10. Klösgen, W., 2002. Causal Subgroup Mining. to apear.

    Google Scholar 

  11. Klösgen, W., May, M., 2002. Subgroup Mining Integrated in an Object-Relational Spatial Database, to appear.

    Google Scholar 

  12. Klösgen, W.,, Zytkow, J. (eds.), 2002., Handbook of Data Mining and Knowledge Discovery, Oxford University Press, New York

    Google Scholar 

  13. Koperski, K., Adhikary, J., Han, J., 1996. Spatial Data Mining, Progress and Challenges, Vancouver, Canada, Technical Report

    Google Scholar 

  14. Malerba, D., Lisi, F., 2001. Discovering Associations between Spatial Objects: An ILP Application. Proc. ILP 2001, eds. Rouveirol, C., Sebag, M., Berlin: Springer, 156–163

    Google Scholar 

  15. Mannila, H., Toivonen, H., Korhola, A.; Olander, H., 1998: Learning, Mining, or Modeling? A Case study from Paleoecology. In: Arikawa, S., Motoda, H. (eds.): Discovery Science. Proceedings from the First International Conference, Fukuoka, Japan, Lecture Notes in Artificial Intelligence 1532. Berlin, Springer, 12–24

    Google Scholar 

  16. May, M.. Spatial Knowledge Discovery, 2000. The SPIN! System. Proc. of the 6th ECGIS Workshop, Lyon, ed. Fullerton, K., JRC, Ispra

    Google Scholar 

  17. May, M., Savinov, A., 2001. An Architecture for the SPIN! Spatial Data Mining Platform, Proc. New Techniques and Technologies for Statistics, NTTS 2001, 467–472, Eurostat

    Google Scholar 

  18. Moraczewski, I. R., Zembowicz, R., Zytkow J. M., 1995: Geobotanical Database Exploration. in: Valdes-Perez (ed.) AAAI Spring Symposium “Systematic Methods of Discovery” Stanford University. CA (AAAI-Press), 76–80

    Google Scholar 

  19. Sarawagi, S., Thomas, S., Agrawal, R., 2000. Integrating Association Rule Mining with Relational Database Systems. Data Mining and Knowledge Discovery, 4, 89–125

    Google Scholar 

  20. Wrobel, S., 1997. An Algorithm for Multi-relational Discovery of Subgroups. In Proc. of First PKDD, eds. Komorowski, J., Zytkow, J., Berlin: Springer, 78–87

    Google Scholar 

  21. Williams, W. T., Lambert, J. M. 1960: Multivariate Methods in Plant Ecology II. The use of an electronic digital computer for association analysis. J. Ecology 47, 689–710

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

May, M., Ragia, L. (2002). Spatial Subgroup Discovery Applied to the Analysis of Vegetation Data. In: Karagiannis, D., Reimer, U. (eds) Practical Aspects of Knowledge Management. PAKM 2002. Lecture Notes in Computer Science(), vol 2569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36277-0_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-36277-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00314-4

  • Online ISBN: 978-3-540-36277-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics