[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving Naive Bayes Using Class-Conditional ICA

  • Conference paper
  • First Online:
Advances in Artificial Intelligence — IBERAMIA 2002 (IBERAMIA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2527))

Included in the following conference series:

Abstract

In the past years, Naive Bayes has experienced a renaissance in machine learning, particularly in the area of information retrieval. This classifier is based on the not always realistic assumption that class-conditional distributions can be factorized in the product of their marginal densities. On the other side, one of the most common ways of estimating the Independent Component Analysis (ICA) representation for a given random vector consists in minimizing the Kullback-Leibler distance between the joint density and the product of the marginal densities (mutual information). From this that ICA provides a representation where the independence assumption can be held on stronger grounds. In this paper we propose class-conditional ICA as a method that provides an adequate representation where Naive Bayes is the classifier of choice. Experiments on two public databases are performed in order to confirm this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, Y., Slattery, S., Ghani, R.: A study of approaches to hypertext categorization. Journal of Intelligent Information Systems. Kluwer Academic Press (2002)

    Google Scholar 

  2. Lewis, D.: Naive bayes at forty: The independence assumption in information retrieval. In N’edellec, C., Rouveirol, C., eds.: Proceedings of ECML-98, 10th European Conference on Machine Learning. Volume 1398.25., Springer Verlag, Heidelberg, DE (1998) 4–15

    Google Scholar 

  3. Domingos, P., Pazzani, M.J.: On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning 29 (1997) 103–130

    Article  MATH  Google Scholar 

  4. Turtle, H., Croft, W.: Evaluation of an inference network-based retrieval model. ACM Transactions on Information Systems 9 (1991) 187–222

    Article  Google Scholar 

  5. Rish, I., Hellerstein, J., Thathachar, J.: An analysis of data characteristics that affect naive bayes performance. In N’edellec, C., Rouveirol, C., eds.: Proceedings of the Eighteenth Conference on Machine Learning-ICML2001, Morgan Kaufmann (2001)

    Google Scholar 

  6. M. Bressan, D. Guillamet, J. Vitria: Using an ica representation of high dimensional data for object recognition and classification. In: IEEE CSC in Computer Vision and Pattern Recognition (CVPR 2001). Volume 1. (2001) 1004–1009

    Google Scholar 

  7. Bell, A., Sejnowski, T.: An information-maximization approach for blind signal separation. Neural Computation 7 (1995) 1129–1159

    Article  Google Scholar 

  8. Field, D.: What is the goal of sensory coding? Neural Computation 6 (1994) 559–601

    Article  Google Scholar 

  9. Hyvärinen, A.: Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation. Neural Computation 11 (1999) 1739–1768

    Article  Google Scholar 

  10. Vigario, R., Jousmäki, V., Hämäläinen, M., Hari, R., Oja, E.: Independent component analysis for identification of artifacts in magnetoencephalographic recordings. Advances in Neural Information Processing Systems 10 (1998) 229–235

    Google Scholar 

  11. Blake, C., Merz, C.: Uci repository of machine learning databases (1998)

    Google Scholar 

  12. LeCun, Y., Labs-Research, A.: The MNIST DataBase of Handwritten digits. http://www.research.att.com/ yann/ocr/mnist/index.html (1998)

  13. Scott, D.W.: Multivariate Density Estimation. John Wiley and sons, New York, NY (1992)

    MATH  Google Scholar 

  14. Duda, R., Hart, P., Stork, D.: Pattern Classication. John Wiley and Sons, Inc., New York, 2nd edition (2001)

    Google Scholar 

  15. Simpson, E.: The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, Ser. B 13 (1951) 238–241

    MATH  MathSciNet  Google Scholar 

  16. Bell, A., Sejnowski, T.: The ‘independent components’ of natural scenes are edge filters. Neural Computation 11 (1999) 1739–1768

    Article  Google Scholar 

  17. Lee, T., Lewicki, M., Seynowski, T.: A mixture models for unsupervised classification of non-gaussian sources and automatic context switching in blind signal separation. IEEE Transactions on PAMI 22 (2000) 1–12

    Google Scholar 

  18. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley and Sons (2001)

    Google Scholar 

  19. Comon, P.: Independent component analysis-a new concept? Signal Processing 36 (1994) 287–314

    Article  MATH  Google Scholar 

  20. Hyvärinen, A.: New approximatins of differential entropy for independent component analysis and projection pursuit. Advances in Neural Processing Systems 10 (1998) 273–279

    Google Scholar 

  21. Marill, T., Green, D.: On the effectiveness of receptors in recognition systems. IEEE Trans. on Information Theory 9 (1963) 1–17

    Article  Google Scholar 

  22. Kailath, T.: The divergence and bhattacharyya distance measures in signal selection. IEEE Trans. on Communication Technology COM-15 1 (1967) 52–60

    Article  Google Scholar 

  23. Swain, P., King, R.: Two effective feature selection criteria for multispectral remote sensing. In: Proceedings of the 1st International Joint Conference on Pattern Recognition, IEEE 73 CHO821-9. (1973) 536–540

    Google Scholar 

  24. Swain, P., Davis, S.: Remote sensing: the quantitative approach. McGraw-Hill (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bressan, M., Vitrià, J. (2002). Improving Naive Bayes Using Class-Conditional ICA. In: Garijo, F.J., Riquelme, J.C., Toro, M. (eds) Advances in Artificial Intelligence — IBERAMIA 2002. IBERAMIA 2002. Lecture Notes in Computer Science(), vol 2527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36131-6_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-36131-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00131-7

  • Online ISBN: 978-3-540-36131-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics