[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Accurate L-Corner Measurement Using USEF Functions and Evolutionary Algorithms

  • Conference paper
  • First Online:
Applications of Evolutionary Computing (EvoWorkshops 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2611))

Included in the following conference series:

Abstract

Corner feature extraction is studied in this paper as a global optimization problem. We propose a new parametric corner modeling based on a Unit Step Edge Function (USEF) that defines a straight line edge. This USEF function is a distribution function, which models the optical and physical characteristics present in digital photogrammetric systems. We search model parameters characterizing completely single gray-value structures by means of least squares fit of the model to the observed image intensities. As the identification results relies on the initial parameter values and as usual with non-linear cost functions in general we cannot guarantee to find the global minimum. Hence, we introduce an evolutionary algorithm using an affine transformation in order to estimate the model parameters. This transformation encapsulates within a single algebraic form the two main operations, mutation and crossover, of an evolutionary algorithm. Experimental results show the superiority of our L-corner model applying several levels of noise with respect to simplex and simulated annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. W. Gruen. “Adaptive Least Squares Correlation: A Powerful Image Matching Technique”. S. Afr. Journal of Photogrammetry, Remote Sensing and Cartography. 14(3), pp. 175–187. 1985.

    Google Scholar 

  2. L. Alvarez and F. Morales. “Affine Morphological Multiscale Analysis of Corners and Multiple Junctions”. International Journal of Computer Vision. 25(2), pp. 95–107, Kluwer Academic Publishers, 1997.

    Article  Google Scholar 

  3. Ebner, M., and Zell, A. “Evolving a Task Specific Image Operator.” In Evolutionary Image Analysis, Signal Processing and Telecommunications. LNCS 1596, Poli et al. (Eds.), EvoIASP. 1999.

    Chapter  Google Scholar 

  4. J. Canny. “A Computational Approach to Edge Detection”. IEEE Trans. on Pattern Analysis and Machine Intelligence. Vol. 8, No. 6, November, 1986.

    Google Scholar 

  5. S. Baker, S. K. Nayar and H. Murase. “Parametric Feature Detection”. International Journal of Computer Vision, 27(1), pp. 27–50, Kluwer Academic Publishers, 1998.

    Article  Google Scholar 

  6. R. Deriche and G. Giraudon. “A Computational Approach for Corner and Vertex Detection”. International Journal of Computer Vision, 10(2), pp. 101–124, Kluwer Academic Publishers, 1993.

    Article  Google Scholar 

  7. T. Lindeberg. “Feature Detection with Automatic Scale Selection”. International Journal of Computer Vision. 30(2), pp. 79–116, Kluwer Academic Publishers, 1998.

    Article  Google Scholar 

  8. D. Marr and E. Hildreth. “Theory of Edge Detection”. Proc. Roy. Soc. London, 207, pp. 187–217, 1980.

    Google Scholar 

  9. R. Mehrotra and S. Nichani. “Corner Detection”. Pattern Recognition. Vol. 23, No. 11, pp. 1223–1233, 1990.

    Article  Google Scholar 

  10. H. P. Moravec. “Towards automatic visual obstacle avoidance”. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, pp. 584, Cambridge, Massachusetts, USA. 1977.

    Google Scholar 

  11. K. Rohr. “Recognizing Corners by Fitting Parametric Models”. International Journal of Computer Vision. 9(3), pp. 213–230, Kluwer Academic Publishers, 1992.

    Article  Google Scholar 

  12. P. L. Rosin. “Augmenting Corner Descriptors”. Graphical Models and Image Processing. Vol. 58, No. 3, May, pp. 286–294, 1996.

    Article  Google Scholar 

  13. Z. Zheng, H. Wang and E. K. Teoh. “Analysis of Gray Level Corner Detection”. Pattern Recognition Letters. 20, pp. 149–162, Elsevier, 1999.

    Article  MATH  Google Scholar 

  14. G. Olague and R. Mohr. “Optimal Camera Placement for Accurate Reconstruction”. Pattern Recognition, Vol.35(4), pp. 927–944, 2002.

    Article  MATH  Google Scholar 

  15. Tsai, D.-M., Hou, H.-T., Su, H.-J. “Boundary-base Corner Detection using Eigenvalues of Covariance Matrices.” Pattern Recognition Letters 20, 31–40. Elsevier, 1999.

    Article  MATH  Google Scholar 

  16. Medioni, G., and Yasumoto, Y. “ Corner Detection and Curve Representation using cubic B-splines.” Computer Vision, Graphics and Image Processing. 39, 267–278., 1987.

    Article  Google Scholar 

  17. Sohn, K., Kim, J. H., Alexander, W. E. “A Mean Field Annealing Aproach to Robust Corner Detection.” IEEE Transactions on System, Man, and Cybernetics-Part B 28, 82–90. 1998.

    Article  Google Scholar 

  18. Beaudet, P. R. “Rotationally Invariant Image Operators.” In Proc. of the International Conference on Pattern Recognition. 579–583. 1978.

    Google Scholar 

  19. Dreschler, L., and Nagel, H. H. “ On the Selection of Critical Points and Local Curvature Extrema of Region Boundaries for Interframe Matching.“ In Proc. of the International Conference on Pattern Recognition. 542–544. 1982

    Google Scholar 

  20. L. Kitchen and A. Rosenfeld. “Gray Level Corner Detection”. Pattern Recognition Letters. No. 1, pp. 95–102, 1982.

    Google Scholar 

  21. Wang, H. and Brady M., “Real-time Corner Detection Algorithms for motion Estimation.” Image and Vision Computing. 13 (9). 1995.

    Google Scholar 

  22. G. Olague and B. Hernández. “Autonomous Model Based Corner Detection using Evolutionary Algorithms”. In American Society for Photogrammetry and Remote Sensing. 12 pages. ASPRS Annual Conference 2001

    Google Scholar 

  23. G. Olague and B. Hernández. “Flexible Model-based Multi-corner Detector for Accurate Measurements and Recognition”. 16th International Conference on Pattern Recognition. IEEE Computer Society Press. pp. 578–583, Vol. 2, 11–15 August 2002. Québec, Canada.

    Google Scholar 

  24. W. H. Press, B. P. Flanery, S. A. Teukolsky and W. T. Vetterling. “Numerical Recipes in C”. Cambridge University Press, Second Edition. 1992.

    Google Scholar 

  25. M. Gen and R. Cheng. “Genetic Algorithms and Engineering Design”. John Wiley and Sons, Inc. 1997.

    Google Scholar 

  26. C. Janikow and Z. Michalewicz. “An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms”. In Proceedings of the Fourth International Conference on Genetic Algorithms. pp. 31–36, San Mateo California, USA. 1991.

    Google Scholar 

  27. Dougherty, E. R. Random Processes for Image and Signal Processing. SPIE Optical Engineering Press, and IEEE Press, Inc.1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olague, G., Hernández, B., Dunn, E. (2003). Accurate L-Corner Measurement Using USEF Functions and Evolutionary Algorithms. In: Cagnoni, S., et al. Applications of Evolutionary Computing. EvoWorkshops 2003. Lecture Notes in Computer Science, vol 2611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36605-9_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-36605-9_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00976-4

  • Online ISBN: 978-3-540-36605-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics