Abstract
The paper describes the automatic learning of parameters for self-diagnosis of a system for automatic orientation of single aerial images used by the State Survey Department of Northrhine-Westfalia. The orientation is based on 3D lines as ground control features, and uses a sequence of probabilistic clustering, search and ML-estimation for robustly estimating the 6 parameters of the exterior orientation of an aerial image. The system is interpreted as a classifier, making an internal evaluation of its success. The classification is based on a number of parameters possibly relevant for self-diagnosis. A hand designed classifier reached 11 % false negatives and 2 % false positives on appr. 17 000 images. A first version of a new classifier using support vector machines is evaluated. Based on appr. 650 images the classifier reaches 2 % false negatives and 4 % false positives, indicating an increase in performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chang, C.-C. & Lin, C.-J. (2002): LIBSVM: a Library for Support Vector Machines (Version 2.33), Technical report, Dep. of Computer Science and Information Engineering, National Taiwan Univ., Taipei 106, Taiwan: last update: January, 2002.
Baarda, W. (1973): S-Transformations and Criterion Matrices, Netherlands Geodetic Commission, Ser. 1, Vol 5.
Förstner, W. (2001): Calibration and orientation of cameras in computer vision, inA. Grün & T. Huang (Eds.), Generic Estimation Procedures for Orientation with Minimum and Redundant Information, Springer.
Mikhail, E. M. & Ackermann, F. (1976): Observations and Least Squares, University Press of America, 1976
Schölkopf, B., Burges, C. J. C. & Smola, A. J. (1998): Introduction to Support Vector Learning, inB. Schölkopf ET AL. (EDS.), Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, chapter 1, pp. 1–15.
Sester, M. & Förstner, W. (1989): Object Location Based on Uncertain Models, Mustererkennung 1989, Springer Informatik Fachberichte, 219, pp. 457–464
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Förstner, W., Läbe, T. (2003). Learning Optimal Parameters for Self-Diagnosis in a System for Automatic Exterior Orientation. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds) Computer Vision Systems. ICVS 2003. Lecture Notes in Computer Science, vol 2626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36592-3_23
Download citation
DOI: https://doi.org/10.1007/3-540-36592-3_23
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00921-4
Online ISBN: 978-3-540-36592-1
eBook Packages: Springer Book Archive