[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-Label Classification of Emotions in Music

  • Conference paper
Intelligent Information Processing and Web Mining

Part of the book series: Advances in Soft Computing ((AINSC,volume 35))

Abstract

This paper addresses the problem of multi-label classification of emotions in musical recordings. The testing data set contains 875 samples (30 seconds each). The samples were manually labelled into 13 classes, without limits regarding the number of labels for each sample. The experiments and test results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. Bernstein., L. (1959) The Joy of Music, New York, Simon and Schuster.

    Google Scholar 

  2. 2. Boutell, M., Shen, X., Luo, J., Brown, C. (2003) Multi-label Semantic Scene Classification. Technical Report, Dept. of Computer Science, U. Rochester

    Google Scholar 

  3. 3. Clare, A., King, R.D. (2001) Knowledge Discovery in Multi-label Phenotype Data. Lecture Notes in Computer Science 2168 42–53.

    Article  Google Scholar 

  4. 4. Dellaert, F., Polzin, T., Waibel, A. (1996) Recognizing Emotion in Speech. Proc. ICSLP 96 3 1970–1973.

    Google Scholar 

  5. 5. Fujinaga, L, McMillan, K. (2000) Realtime recognition of orchestral instruments. Proceedings of the International Computer Music Conference, 141–143.

    Google Scholar 

  6. 6. Guarino, N. (Ed.) (1998) Formal Ontology in Information Systems, IOS Press, Amsterdam.

    Google Scholar 

  7. 7. Li, T., Ogihara, M. (2003) Detecting emotion in music. 4th International Conference on Music Information Retrieval ISMIR, Washington, D.C., and Baltimore, MD. Available at http://ismir2003.ismir.net/papers/Li.pdf

    Google Scholar 

  8. 8. Logan, B. and Salomon, A. (2001) A Music Similarity Function Based on Signal Analysis, IEEE International Conference on Multimedia and EXPO (ICME 2001).

    Google Scholar 

  9. 9. McCallum, A. (1999) Multi-label Text Classification with a Mixture Model Trained by EM. AAAI'99 Workshop on Text Learning.

    Google Scholar 

  10. 10. Peeters, G. Rodet, X. (2002) Automatically selecting signal descriptors for Sound Classification. ICMC 2002 Goteborg, Sweden

    Google Scholar 

  11. 11. Pollard, H. F., Jansson, E. V. (1982) A Tristimulus Method for the Specification of Musical Timbre. Acustica 51 162–171

    Google Scholar 

  12. 12. Synak, P. and Wieczorkowska, A. (s2005). Some Issues on Detecting Emotions in Music, in: D. Slezak, J. Yao, J. F. Peters, W. Ziarko, X. Hu (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. 10th International Conference, RSFDGrC 2005, Regina, Canada, August/September 2005, Proceedings, Part II. LNAI 3642, Springer, 314–322

    Google Scholar 

  13. 13. Tato, R., Santos, R., Kompe, R., Pardo, J. M. (2002) Emotional Space Improves Emotion Recognition. 7th International Conference on Spoken Language Processing ICSLP 2002, Denver, Colorado

    Google Scholar 

  14. 14. Tzanetakis, G., Cook, P. (2000) Marsyas: A framework for audio analysis. Organized Sound 4(3) 169–175. Available at http://www-2.cs.cmu.edu/~gtzan/ work/pubs/organisedOOgtzan.pdf

    Article  Google Scholar 

  15. 15. Tzanetakis, G., Essl, G. and Cook, P. (2001) Automatic Musical Genre Classification of Audio Signals, 2nd International Conference on Music Information Retrieval (ISMIR 2001)

    Google Scholar 

  16. 16. Wieczorkowska, A. A. (2005) Towards Extracting Emotions from Music, in: L. Bole, Z. Michalewicz, T. Nishida (Eds), Intelligent Media Technology for Communicative Intelligence, Second International Workshop, IMTCI 2004, Warsaw, Poland, September 2004, Revised Selected Papers. LNAI 3490, Springer, 228–238.

    Chapter  Google Scholar 

  17. 17. Wieczorkowska, A. A., Ras, Z.W., Tsay, L.-S. (2003) Representing audio data by FS-trees and Adaptable TV-trees, in Foundations of Intelligent Systems, Proceedings of ISMIS Symposium, Maebashi City, Japan, LNAI, Springer-Verlag, No. 2871, 2003, 135–142

    Google Scholar 

  18. 18. Wieczorkowska, A. A., Ras, Z.W. (Eds.) (2003) Music Information Retrieval, Special Issue, Journal of Intelligent Information Systems, Kluwer, Vol. 21, No. 1, 2003

    Google Scholar 

  19. 19. Wieczorkowska, A., Synak, P., Lewis, R., Ras, Z. W. (2005) Extracting Emotions from Music Data, in: M.-S. Hacid, N. V. Murray, Z. W. Ras, S. Tsumoto (Eds.), Foundations of Intelligent Systems. 15th International Symposium, ISMIS 2005, Saratoga Springs, NY, USA, May 25–28, 2005, Proceedings. LNAI 3488, Springer, 456–465.

    Google Scholar 

  20. 20. Wieczorkowska, A., Synak, P., Lewis, R., Ras, Z. W. (2005) Creating Reliable Database for Experiments on Extracting Emotions from Music, in: M. A. Kłopotek, S. Wierzchon, K. Trojanowski (Eds.), Intelligent Information Processing and Web Mining. Proceedings of the International IIS: IIPWM'05 Conference held in Gdansk, Poland, June 13–16, 2005. Advances in Soft Computing, Springer, 395–402.

    Google Scholar 

  21. 21. Yang, C. (2001) Music Database Retrieval Based on Spectral Similarity, 2nd International Conference on Music Information Retrieval (ISMIR 2001), Poster.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Wieczorkowska, A., Synak, P., Raś, Z.W. (2006). Multi-Label Classification of Emotions in Music. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33521-8_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-33521-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33520-7

  • Online ISBN: 978-3-540-33521-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics