[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Trademark Retrieval in the Presence of Occlusion

  • Conference paper
Intelligent Information Processing and Web Mining

Part of the book series: Advances in Soft Computing ((AINSC,volume 35))

Abstract

Employing content based image retrieval (CBIR) methods to trademark registration can improve and accelerate the checking process greatly. Amongst all the features present in CBIR, shape seems to be the most appropriate for this task. It is however usually only utilized for non-occluded and noise free objects. In this paper the emphasis is put on the atypical case of the fraudulent creation of a new trademark based on a popular registered one. One can just modify an existing logo by, for example, removing or inserting a part into it. Another method is to modify even smaller subparts, which is close to adding noise to it’s silhouette. So, a method is herein described of template matching using a shape descriptor which is robust to rotation, scaling, shifting, and also to occlusion and noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. Alfarez R., Wang Y.-F. (1999) Geometric and illumination invariants for object recognition, IEEE Trans. On Pattern Analysis and Machine Intelligence 21, 505–535

    Article  Google Scholar 

  2. 2. Antani S., Kasturi R., Jain R. (2002) A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video, Pattern Recognition 35, 945–965

    Article  MATH  Google Scholar 

  3. 3. Belongie S., Malik J., Puzicha J. (2000) Shape context: a new descriptor for shape matching and object recognition, Proc. of Advances in Neural Information Processing Systems 13, 831–837

    Google Scholar 

  4. 4. Bigun J., Bhattacharjee S.K., Michel S. (1996) Orientation radiograms for image retrieval: an alternative to segmentation, Proc. of the IEEE International Conference on Pattern Recognition, 346–350

    Google Scholar 

  5. 5. Frejlichowski D. (2003) Problem braku czèsci sylwetki w rozpoznawaniu obrazów konturowych z uÿzyciem przekszta_lcenia do uk_ladu biegunowego, Materialy VIII Sesji Naukowej Informatyki, 181–188

    Google Scholar 

  6. 6. Frejlichowski D. (2004) Metoda porównywania zniekszta_lconych dwuwymiarowych obiektów konturowych, Metody Informatyki Stosowanej w Technice i Technologii, 329–334

    Google Scholar 

  7. 7. Huang C.-L., Huang D.-H. (1998) A content-based image retrieval system, Image and Vision Computing 16, 149–163

    Article  Google Scholar 

  8. 8. Hupkens Th. M., Clippeleir J. de (1995) Noise and intensity invariant moments, Pattern Recognition Letters 16, 371–376

    Article  Google Scholar 

  9. 9. Jin L., Tianxu Z. (2004) Fast algorithm for generation of moment invariants, Pattern Recognition 37, 1745–1756

    MATH  Google Scholar 

  10. 10. Kan C., Srinath M. D. (2002) Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments, Pattern Recognition 35, 143–154

    Article  MATH  Google Scholar 

  11. 11. Kuchariew G. (1998) Przetwarzanie i Analiza Obrazów Cyfrowych, Politechnika Szczecińska, Wydzia_l Informatyki, Szczecin, Informa

    Google Scholar 

  12. 12. Loncaric S. (1998) A survey on shape analysis techniques, Pattern Recognition 31, 983–1001

    Article  Google Scholar 

  13. 13. Mokhtarian F. (1997) Silhouette-based occluded object recognition through curvature scale space, Machine Vision and Applications 10, 87–97

    Article  Google Scholar 

  14. 14. Rauber T.W. (1994) Two-dimensional shape description, Technical Report: GR UNINOVA-RT-10–94, Universidade Nova de Lisboa

    Google Scholar 

  15. 15. Rothe I., Süsse H., Voss K. (1996) The method of normalization to determine invariants, IEEE Trans. on Pattern Analysis and Machine Intelligence 18, 366– 375

    Article  Google Scholar 

  16. 16. Shih J. L., Chen L.-H. (2001) A new system for trademark segmentation and retrieval, Image and Vision Computing Journal 19, 1011–1018

    Article  Google Scholar 

  17. 17. Tarel J.-P., Cooper D. B. (2000) The complex representation of algebraic curves and its simple exploitation for pose estimation and invariant recognition, IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 663–674

    Article  Google Scholar 

  18. 18. Zhang D., Lu G. (2002) Shape-based image retrieval using Generic Fourier Descriptor, Signal Processing: Image Communication 17, 825–848

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Frejlichowski, D. (2006). Trademark Retrieval in the Presence of Occlusion. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33521-8_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-33521-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33520-7

  • Online ISBN: 978-3-540-33521-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics