[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Minimum Spanning Trees Displaying Semantic Similarity

  • Conference paper
Intelligent Information Processing and Web Mining

Part of the book series: Advances in Soft Computing ((AINSC,volume 31))

  • 879 Accesses

Abstract

Similarity of semantic content of web pages is displayed using interactive graphs presenting fragments of minimum spanning trees. Homepages of people are analyzed, parsed into XML documents and visualized using TouchGraph LinkBrowser, displaying clusters of people that share common interest. The structure of these graphs is strongly affected by selection of information used to calculate similarity. Influence of simple selection and Latent Semantic Analysis (LSA) on structures of such graphs is analyzed. Homepages and lists of publications are converted to a word frequency vector, filtered, weighted and similarity matrix between normalized vectors is used to create separate minimum sub-trees showing clustering of people’s interest. Results show that in this application simple selection of important keywords is as good as LSA but with much lower algorithmic complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Aas. Html-parser. http://search.cpan.org/~gaas/HTML-Parser, 2004.

    Google Scholar 

  2. G. Aas. Html-parser. http://www.touchgraph.com, 2004.

    Google Scholar 

  3. The Brain. The brain. http://www.thebrain.com, 2004.

    Google Scholar 

  4. T. Buzan. Mind maps. http://www.mind-map.com, 2004.

    Google Scholar 

  5. P. Groenen I. Borg. Modern Multidimensional Scaling. Theory and Applications. Springer Series in Statistics, Heidelberg, 1996.

    Google Scholar 

  6. T. Kohonen. Websom. http://websom.hut.fi, 1999.

    Google Scholar 

  7. J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. In Proceedings of the American Mathematical Society, volume 7, pages 48–50, 1956.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. K. Landauer, P. W. Foltz, and D. Laham. Introduction to latent semantic analysis. Discourse Processes, 25:259–284, 1998.

    Article  Google Scholar 

  9. D.D. Lewis. Reuters-21578 text categorization test collection. http://www.daviddlewis.com/resources/testcollections/reuters21578/, 1997.

    Google Scholar 

  10. P. Matykiewicz. Demonstration applet. http://www.neuron.m4u.pl/search, 2004.

    Google Scholar 

  11. W. Pedrycz. Knowledge-Based Clustering: From Data to Information Granules. John Wiley and Sons, Chichester, 2005.

    MATH  Google Scholar 

  12. M._F. Porter. An algorithm for suffix stripping. Program, 14(3):48–50, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duch, W., Matykiewicz, P. (2005). Minimum Spanning Trees Displaying Semantic Similarity. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32392-9_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-32392-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25056-2

  • Online ISBN: 978-3-540-32392-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics