Abstract
In this paper we develop a natural powerobject construction in the context of enriched categories, a context which generalizes the traditional order-theoretic and metric space contexts. This powerobject construction is a subobject transformer involving the dialectical flow of closed subobjects of enriched categories. It is defined via factorization of a comprehension schema over metrical predicates, followed by the fibrational inverse image of metrical predicates along character, the left adjoint in the comprehension schema. A fundamental continuity property of this metrical powerobject construction vis-a-vis greatest fixpoints is established by showing that it preserves the limit of any Cauchy ωop-diagram. Using this powerobject construction we unify two well-known fixpoint semantics for concurrent interacting processes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Adamek and V. Koubek, Least Fixed Point of a Functor, J. Comput. System Sci. 19 (1979) 163.
M.A. Arbib and E.G. Manes, Parameterized Data Types Do Not Need Highly Constrained Parameters, Info. and Contr. 52 (1982) 139–158.
S. Bernow and P. Raskin, Ecology of Scientific Consciousness, Telos 28, Summer (1976).
J.W. DeBakker and J.I. Zucker, Processes and the Denotational Semantics of Concurrency, Info. and Contr. 54 (1982) 70–120.
W. Golson and W. Rounds, Connections between Two Theories of Concurrency: Metric Spaces and Synchronization Trees, Tech. Rep. TR-3-83, Computing Research Laboratory, University of Michigan, 1983.
J. Gray, Fibred and Cofibred Categories, Conference on Categorical Algebra (1965).
R.E. Kent, Observational Equivalence of Concurrent Processes is the Kernel of a Multiplicity Morphism of Abstract Tree Data Types, International Computer Symposium 1984, Taipei, Taiwan (1984).
R.E. Kent, The Metric Powerspace Construction, Tech. Rep. UIC-EECS-84-14, EECS Dept., University of Illinois at Chicago, 1984.
R.E. Kent, Synchronization Trees and Milner's Strong Congruence: a Fixpoint Approach, Tech. Rep. UIC-EECS-85-5, EECS Dept., University of Illinois at Chicago, 1985.
R.E. Kent, Dialectical Systems: Interactions and Combinations, manuscript (1986).
R.E. Kent, Dialectical Development in First Order Logic: I. Relational Database Semantics (1987), submitted for publication.
K. Kuratowski, Topology, Vol.1, (Academic Press, New York, N.Y., 1966).
F.W. Lawvere, Metric Spaces, Generalized Logic, and Closed Categories, Seminario Matematico E. Fisico. Rendiconti. Milan. 43 (1973) 135–166.
D.J. Lehmann and M.B. Smyth, Algebraic Specification of Data Types: A Synthetic Approach, Math. Systems Theory 14 (1981) 97–139.
M.G. Main, Free Constructions of Powerdomains, in: Proceedings of the Conference on Mathematical Foundations of Programming Language Semantics, Lec. Notes in Comp. Sci. 239, (Springer-Verlag, New York).
M.G. Main, Semiring Module Powerdomains, Tech. Rep. CU-CS-286-84, Department of Computer Science, University of Colorado at Boulder, 1984.
H. Marcuse, Zum Problem der Dialektik, Die Gesellschaft, Volume VII (1930–31); On the Problem of the Dialectic, Telos 27, Spring (1976).
R. Milner, A Calculus of Communicating Systems, Lec. Notes in Comp. Sci. 92, (Springer-Verlag, New York, 1980).
R. Milner, Calculi for Synchrony and Asynchrony, Theo. Comp. Sci. 25 (1983) 267–310.
M. Nivat, Infinite Words, Infinite Trees, Infinite Computations, Mathematical Centre Tracts 109 (1979) 1–52.
G.D. Plotkin, A Powerdomain Construction, SIAM J. Comput. 5 (1976) 452–487.
K. Popper, What is Dialectic?, Mind 49 (1940) 403–426.
M.B. Smyth, Power Domains, J. Comput. System Sci. 16 (1978) 23–36.
M.B. Smyth, Power Domains and Predicate Transformers: a Topological View, 10th ICALP, Barcelona, Spain, Lec. Notes in Comp. Sci. 154, (Springer-Verlag, New York, 1983).
M. Steenstrup, M.A. Arbib and E. Manes, Port Automata and the Algebra of Concurrent Processes, COINS Tech. Rep. 81-25, University of Massuchusetts, 1981.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kent, R.E. (1988). The metric closure powerspace construction. In: Main, M., Melton, A., Mislove, M., Schmidt, D. (eds) Mathematical Foundations of Programming Language Semantics. MFPS 1987. Lecture Notes in Computer Science, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19020-1_9
Download citation
DOI: https://doi.org/10.1007/3-540-19020-1_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-19020-2
Online ISBN: 978-3-540-38920-0
eBook Packages: Springer Book Archive