[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

What you always wanted to know about clause graph resolution

  • Graph Based Deduction
  • Conference paper
  • First Online:
8th International Conference on Automated Deduction (CADE 1986)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 230))

Included in the following conference series:

Abstract

Clause graph (or connection graph) resolution was invented by Robert Kowalski in 1975. Its behaviour differs significantly from that of traditional resolution in clause sets. Standard notions like completeness do not adequately cover the new phenomena introduced by clause graph resolution and standard proof techniques do not work for clause graphs, which are the major reasons why important questions have been open for years. This paper defines a series of relevant properties in precise terms and answers several of the open questions. The clause graph inference system is refutation complete and refutation confluent. Compared to clause set resolution, clause graph resolution does not increase the complexity of simplest refutations. Many well-known restriction strategies are refutation complete, but most are not refutation confluent for clause graph resolution, which renders them useless. Exhaustive ordering strategies do not exist and contrary to a wide-spread conjecture the plausible approximations of exhaustiveness do not ensure the detection of a refutation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, P.B.: Resolution with Merging, JACM, Vol. 15, No. 3 (1968), 367–381

    Article  Google Scholar 

  2. Andrews, P.B.: Refutations by Matings, IEEE Trans. Comp., Vol. C-25, No. 8 (1976), 801–807

    Google Scholar 

  3. Andrews, P.B.: Theorem Proving via General Matings, JACM, Vol. 28, No. 2 (1981), 193–214

    Article  Google Scholar 

  4. Antoniou, G., Ohlbach, H. J.: Terminator, Proc. 8th IJCAI, Karlsruhe (1983), 916–919

    Google Scholar 

  5. Bruynooghe, M.: The Inheritance of Links in a Connection Graph, Report CW2. Applied Mathematics and Programming Division, Katholieke Universiteit Leuven (1975)

    Google Scholar 

  6. Brown, F.: Notes on Chains and Connection Graphs, Personal Notes. Dept. of Computation and Logic, University of Edinburgh (1976)

    Google Scholar 

  7. Bibel, W.: A Strong Completeness Result for the Connection Graph Proof Procedure, Bericht ATP-3-IV-80, Institut für Informatik, Technische Universität, München (1980)

    Google Scholar 

  8. Bibel, W.: On the Completeness of Connection Graph Resolution, Proc. GWAI-81, Springer Informatik Fachberichte, Vol.47, (edited by Jörg H. Siekmann), Springer, Heidelberg (1981), 246–247

    Google Scholar 

  9. Bibel, W.: On Matrices with Connections, JACM, Vol. 28, No. 4 (1981), 633–645

    Article  Google Scholar 

  10. Bibel, W.: A Comparative Study of Several Proof Procedures, Artificial Intelligence, Vol. 18, No. 3 (1982), 269–293

    Article  Google Scholar 

  11. Bibel, W.: Automated Theorem Proving, Vieweg, Wiesbaden (1982)

    Google Scholar 

  12. Chang, C.-L., Lee, R. C.-T.: Symbolic Logic and Mechanical Theorem Proving, Computer Science and Applied Mathematics Series (Editor Werner Rheinboldt), Academic Press, New York (1973)

    Google Scholar 

  13. Chang, C.-L., Slagle, J. R.: Using Rewriting Rules for Connection Graphs to Prove Theorems. Artificial Intelligence, Vol.12, No. 2 (1979), 159–178

    Article  Google Scholar 

  14. Eisinger, N.: Completeness, Confluence, and Related Properties of Clause Graph Resolution, Dissertation, Fachbereich Informatik, Universität Kaiserslautern (to appear 1986)

    Google Scholar 

  15. Huet, G.: Confluent Reductions: Abstract Properties and Applications to Term Rewriting, JACM, Vol. 27, No. 4 (1980), 797–821

    Article  Google Scholar 

  16. Kowalski, R.: Search Strategies for Theorem-Proving, Machine Intelligence (B. Meltzer and D. Michie, eds.), Vol. 5, Edinburgh University Press, Edinburgh (1970), 181–201

    Google Scholar 

  17. Kowalski, R.: A Proof Procedure Using Connection Graphs. JACM, Vol. 22, No. 4 (1975), 572–595

    Article  Google Scholar 

  18. Kowalski, R.: Logic for Problem Solving, Artificial Intelligence Series (Nils J. Nilsson, Editor), Vol. 7, North-Holland, New York (1979)

    Google Scholar 

  19. Kowalski, R., Kuehner, D.: Linear Resolution with Selection Function, Artificial Intelligence, Vol. 2, No. 3–4 (1971), 227–260

    Article  Google Scholar 

  20. Loveland, D.: Automated Theorem Proving: A Logical Basis, Fundamental Studies in Computer Science, Vol. 6, North-Holland, New York (1978)

    Google Scholar 

  21. Nilsson, N.: Principles of Artificial Intelligence, Tioga, Palo Alto, CA (1980)

    Google Scholar 

  22. Noll, H.: A Note on Resolution: How to Get Rid of Factoring without Losing Completeness, Proc. 5th CADE, Springer Lecture Notes in Computer Science, Vol. 87 (edited by W. Bibel and R. Kowalski), Springer, Heidelberg (1980), 250–263

    Google Scholar 

  23. Shostak, R. E.: Refutation Graphs, Artificial Intelligence, Vol. 7, No. 1 (1976), 51–64

    Article  Google Scholar 

  24. Shostak, R. E.: A Graph-Theoretic View of Resolution Theorem-Proving, Report SRI International, Menlo Park, CA (1979)

    Google Scholar 

  25. Smolka, G.: Einige Ergebnisse zur Vollständigkeit der Beweisprozedur von Kowalski, Diplomarbeit, Fakultät Informatik, Universität Karlsruhe (1982)

    Google Scholar 

  26. Smolka, G.: Completeness of the Connection Graph Proof Procedure for Unit Refutable Clause Sets, Proc. GWAI-82, Springer Informatik Fachberichte, Vol. 58 (1982), 191–204

    Google Scholar 

  27. Sickel, S.: A Search Technique for Clause Interconnectivity Graphs, IEEE Trans. Comp., Vol. C-25, No. 8 (1976), 823–835

    Google Scholar 

  28. Siekmann, J., Stephan, W.: Completeness and Soundness of the Connection Graph Proof Procedure, Bericht 7/76, Fakultät Informatik, Universität Karlsruhe (1976)

    Google Scholar 

  29. Siekmann, J., Stephan, W.: Completeness and Consistency of the Connection Graph Proof Procedure, Interner Bericht Institut I, Fakultät Informatik, Universität Karlsruhe (1980)

    Google Scholar 

  30. Wrightson, G.: An Approach to the Completeness of the Connection Graph Proof Procedure, Personal Notes, Dept. of Comp. Sc., Victoria University of Wellington, NZ (1984)

    Google Scholar 

  31. Wilson, G. A., Minker, J.: Resolution, Refinements and Search Strategies: A Comparative Study, IEEE Trans. Comp., Vol. C-25, No. 8 (1976), 782–801

    Google Scholar 

  32. Wos, L., Overbeek, R., Lusk, E., Boyle, J.: Automated Reasoning — Introduction and Applications, Prentice-Hall, Englewood Cliffs, NJ (1984)

    Google Scholar 

  33. Wos, L., Carson, D. F., Robinson, G. A.: The Unit Preference Strategy in Theorem Proving, Proc. AFIPS-26, Spartan Books, Washington, D.C. (1964), 615–621

    Google Scholar 

  34. Wos, L., Robinson, G. A., Carson, D. F.: Efficiency and Completeness of the Set of Support Strategy in Theorem Proving, JACM, Vol. 12, No. 4 (1965), 536–541

    Article  Google Scholar 

  35. Yates, R. A., Raphael, B., Hart, T. P.: Resolution Graphs, Artificial Intelligence, Vol. 1, No. 3–4 (1970), 257–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jörg H. Siekmann

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisinger, N. (1986). What you always wanted to know about clause graph resolution. In: Siekmann, J.H. (eds) 8th International Conference on Automated Deduction. CADE 1986. Lecture Notes in Computer Science, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16780-3_100

Download citation

  • DOI: https://doi.org/10.1007/3-540-16780-3_100

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16780-8

  • Online ISBN: 978-3-540-39861-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics