[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Resource-bounded Kolmogorov complexity of hard languages

Extended abstract

  • Conference paper
  • First Online:
Structure in Complexity Theory

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 223))

Abstract

This paper explores further the relationship between randomness and complexity. The concept of time-/space-bounded Kolmogorov complexity of languages is introduced. Among others we show that there exists a language L in DTIME(22lin) such that the 2poly-time-bounded Kolmogorov complexity of L is exponential almost everywhere. We study time-/space- bounded Kolmogorov complexity of languages that are DTIME(22lin)-(SPACE (2lin)-) hard under polynomial-time Turing reductions. The connection between Kolmogorov-random languages and almost everywhere hard languages is investigated. We also show that Kolmogorov randomness implies Church randomness. Finally, we work out the relationship between time-/space- bounded Kolmogorov complexity and time-/space- bounded descriptional complexity of Boolean circuits and formulas for hard languages. This result provides a classification of exponential-size circuits and formulas in terms of the amount of information contained in them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.: "Two Theorems on Random Polynomial Time", Proc. 19th FOCS, pp. 75–83, 1978.

    Google Scholar 

  2. Balcázar, J.L. & Schöning, U.: "Bi-immune Sets for Complexity Classes", to appear in Math. Syst. Theor.

    Google Scholar 

  3. Berman, L.: "On the Structure of Complete Sets: Almost Everywhere Complexity And Infinitely Often Speedup", Proc. 17th FOCS, pp. 76–80, 1976.

    Google Scholar 

  4. Berman, L. & Hartmanis, J.: "On Isomorphisms and Density of NP and Other Complete Sets", SIAM J. Comput. 6, pp. 305–322, 1977.

    Article  Google Scholar 

  5. Chaitin, G.J.: "On the Length of Programs for Computing Finite Binary Sequences", J.ACM 13, pp. 547–569, 1966.

    Google Scholar 

  6. Church, A.: "On the Concept of Random Sequence", Bull. AMS 46, pp. 130–135, 1940.

    Google Scholar 

  7. Cook, S.A.: "The Classification of Problems Which Have Fast Parallel Algorithms", Proc. FCT'83, LNCS 158, pp. 78–93, 1983.

    Google Scholar 

  8. Di Paola, R.A.: "Random Sets in Subrecursive Hierarchies", J. ACM 16, pp. 621–630, 1969.

    Google Scholar 

  9. Garey, M.R. & Johnson, D.S.: "Computers and Intractability", Freeman & Co., 1979.

    Google Scholar 

  10. Hartmanis, J.: "Generalized Kolmogorov Complexity and the Structure of Feasible Computations", Proc. 24th FOCS, pp. 439–445, 1983.

    Google Scholar 

  11. Hopcroft, J.E. & Ullman, J.D.: "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, 1979.

    Google Scholar 

  12. Huynh, D.T.: "Some Observations about the Randomness of Hard Problems", Manuscript, 1985.

    Google Scholar 

  13. Kannan, R.: "Circuit-Size Lower Bounds and Non-reducibility to Sparse Sets", Infor. & Contr. 55, pp. 40–56, 1982.

    Google Scholar 

  14. Karp, R.M. & Lipton, R.J.: "Some Connections between Nonuniform and Uniform Complexity Classes", Proc. 12th STOC, pp. 302–309, 1980.

    Google Scholar 

  15. Ko, K.: "Resource-Bounded Program-Size Complexity and Pseudo-Random Sequences", to appear.

    Google Scholar 

  16. Kolmogorov, A.N.: "Three Approaches for Defining the Concept of Information Quantity", Probl. Inform. Trans. 1, pp. 1–7, 1965.

    Google Scholar 

  17. Ladner, R.E.: "The Circuit Value Problem Is Log-space Complete for P", SIGACT News 7, pp. 18–20, 1975.

    Article  Google Scholar 

  18. Loveland, D.W.: "A Variant of the Kolmogorov Concept of Complexity", Infor. & Contr. 15, pp. 510–526, 1969.

    Google Scholar 

  19. Lynch, N.: ‘Log Space Recognition and Translation of Parenthesis Languages", J. ACM 24, pp. 583–590, 1977.

    Article  Google Scholar 

  20. Martin-Löf, P.: "On the Definition of Random Sequences", Infor. & Contr. 9, pp. 602–619, 1966.

    Google Scholar 

  21. Martin-Löf, P.: "Complexity Oscillations in Infinite Binary Sequences", Z. Wahrsch.-theor. verw. Geb. 19, pp. 225–230, 1971.

    Google Scholar 

  22. Mehlhorn, K.: "Bracket Languages Are Recognizable in Logarithmic Space", TR Univ. Saarlandes, Saarbrücken, 1975.

    Google Scholar 

  23. Meyer, A.R. & McCreight, E.M.: "Computationally Complex and Pseudo-random Zero-one Valued Functions", in "Theory of Machines and Computations", Kohavi and Paz, eds., Academic Press, pp. 19–42, 1971.

    Google Scholar 

  24. Paul, W., Seiferas, J. & Simon, J.: "An Information-theoretic Approach to Time Bounds for On-line Computation", Proc. 12th STOC. pp. 357–367, 1980.

    Google Scholar 

  25. Rogers, H.: "Theory of Recursive Functions and Effective Computability", McGraw-Hill, 1967.

    Google Scholar 

  26. Ruzzo, W.L.: "On Uniform Circuit Complexity", J. Comput. Syst. Sci. 22, pp. 365–383, 1981.

    Google Scholar 

  27. Savage, J.E.: "The Complexity of Computing", Wiley & Sons, New York, 1976.

    Google Scholar 

  28. Schnorr, C.P.: "Zulfalligkeit und Wahrscheinlichkeit", LNM 218, Springer Verlag, 1971.

    Google Scholar 

  29. Sipser, M.: "A Complexity Theoretic Approach to Randomness", Proc. 15th STOC, pp. 330–335, 1983.

    Google Scholar 

  30. Stockmeyer, L.J.: "The Complexity of Decision Problems in Automata Theory and Logic", MAC TR-133, MIT, 1974.

    Google Scholar 

  31. Valiant, L.G.: "Completeness Classes in Algebra", Proc. 11th STOC, pp. 249–261, 1979.

    Google Scholar 

  32. Wilber, R.E.: "Randomness and the Density of Hard Problems", Proc. 24th FOCS, pp. 335–342, 1983.

    Google Scholar 

  33. Wilson, C.B.: "Relativized Circuit Complexity", Proc. 24th FOCS, pp. 329–334, 1983.

    Google Scholar 

  34. Yao, A.C.: "Theory and Applications of Trapdoor Functions", Proc. 23rd FOCS, pp. 80–91, 1982.

    Google Scholar 

  35. Zvonkin, A.K. & Levin, L.A.: The Complexity of Finite Objects and the Development of the Concepts of Information and Randomness by Means of the Theory of Algorithms", Russian Math. Survey 25, pp. 83–124, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan L. Selman

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huynh, D.T. (1986). Resource-bounded Kolmogorov complexity of hard languages. In: Selman, A.L. (eds) Structure in Complexity Theory. Lecture Notes in Computer Science, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16486-3_97

Download citation

  • DOI: https://doi.org/10.1007/3-540-16486-3_97

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16486-9

  • Online ISBN: 978-3-540-39825-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics