Preview
Unable to display preview. Download preview PDF.
References
B.BUCHBERGER,Ein Algorithmus zum auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D.Dissertation,Univ.Innsbruck, 1965
B. BUCHBERGER, Ein algorithmisches Kriterium für die Losbarkeit eines algebraischen Gleichungssystems, Aeq.Math. 4 (1970) 374–383
B.BUCHBERGER,Gröbner bases:an algorithmic method in polynomial ideal theory,in: N.K.BOSE (ed.) Recent trends in multidimensional systems theory,Reidel (1984)
W.GROEBNER,Algebraische Geometrie,2 voll.,Mannheim (1968)
H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann.Math. 79 (1964) 109–326
H.M. MOELLER, F. MORA, The computation of the Hilbert function,Proc.EUROCAL 83, L. N.Comp.Sci. 162 (1983) 157–167
F. MORA; An algorithm to compute the equations of tangent cones,Proc.EUROCAM 82, L.N.Comp.Sci. 144 (1982) 158–165
W. TRINKS Ueber B.Buchbergers Verfahren,Systeme algebraischer Gleichungen zu losen, J.Numb.Th. 10 (1978) 475–488
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1985 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mora, F. (1985). An algorithmic approach to local rings. In: Caviness, B.F. (eds) EUROCAL '85. EUROCAL 1985. Lecture Notes in Computer Science, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-15984-3_322
Download citation
DOI: https://doi.org/10.1007/3-540-15984-3_322
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-15984-1
Online ISBN: 978-3-540-39685-7
eBook Packages: Springer Book Archive